/LightGrad

lightweight

Primary LanguagePythonMIT LicenseMIT

LightGrad: Lightweight Diffusion Probabilistic Model for Text-to-speech

Demos are available at: https://thuhcsi.github.io/LightGrad/

Setup Environment

Run:

git clone --recursive https://github.com/thuhcsi/LightGrad.git

Run:

python -m pip install -r requirements.txt

Training

Preprocess for BZNSYP

Download dataset from url. Run

python preprocess.py bznsyp [PATH_TO_DIRECTORY_CONTAINING_DATASET] \
    [PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS] \
    --test_sample_count 200 --valid_sample_count 200

This will produce phn2id.json, train_dataset.json, test_dataset.json, valid_dataset.json in [PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS].

Preprocess for LJSpeech

Download dataset from url. Run

python preprocess.py ljspeech [PATH_TO_DIRECTORY_CONTAINING_DATASET] \
    [PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS] \
    --test_sample_count 200 --valid_sample_count 200

This will produce phn2id.json, train_dataset.json, test_dataset.json, valid_dataset.json in [PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS].

Training for BZNSYP

Edit config/bznsyp_config.yaml, set train_datalist_path, valid_datalist_path, phn2id_path and log_dir. Run:

python train.py -c config/bznsyp_config.yaml

Training for LJSpeech

Edit config/ljspeech_config.yaml, set train_datalist_path, valid_datalist_path, phn2id_path and log_dir. Run:

python train.py -c config/ljspeech_config.yaml

Inference

Edit inference.ipynb. Set HiFiGAN_CONFIG, HiFiGAN_ckpt and ckpt_path.

References