/jupyter_workstation

yu long's note about jupyter workstation

Primary LanguagePython

Jupyter WorkStation

Jupyterhub + nbextension + templates + GPU driver support

Deploy on GCE

Develop on docker

Techniqual Details

  1. use jupyterhub 1.5.1 for stability
  2. use LocalAuthenticator (create user in system)
  3. put jupyterhub_config.py into srv/jupyterhub/jupyterhub_config.py
  4. (GCE) deploy jupyterhub.service from /opt/jupyterhub/etc/systemd/jupyterhub.service to /etc/systemd/system/jupyterhub.service (soft link)

User Management

add user

Docker

  • by jupyterhub GUI (without password)
  • root useradd username (X) - wrong folder path
  • root passwd userpassword

GCE

  • root useradd username (X) - wrong folder path
  • root passwd userpassword

delete user

Docker

  • root userdel uname
  • root userdel -r uname (folders & buffers)

GCE

  • be careful! - we shouldn't delete any user registered on the workstation.

ref : https://blog.csdn.net/weixin_48114253/article/details/117548513

Change to a user and sudo privileges

  • sudo --login - login to super user
  • sudo deluser username sudo google-sudoers take out user sudo and google-sudoers privileges
  • su - test - Switch to test and simulate a full login shell: (need password)
    • sudo ls - [sudo] password for test:
    • test is not in the sudoers file. This incident will be reported.
      apt-get install
      E: Could not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied)
      E: Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), are you root?
      
  • sudo usermod -aG sudo username - given sudo access
  • groups username - check user with permission group

FireWall

  • tldr ufw
  • ufw allow from a.b.c.d to any port 22 - allow a.b.c.d to access port 22
  • ufw status

Minimum trouble shooting on the firewall settings

  • sudo ufw status
  • create a simple http server - python -m http.server 8888
  • sudo ufw allow from a.b.c.d to any port 8888
  • check from remote machine - curl http://localhost:8888
  • check from local machine - curl http://a.b.c.d:8888

GCE Workstation checklist

  • - GCE with GPU Driver and GPU
  • - Jupyterhub on root, deploy by systemctl service and JupyterTemplate, setup jupyterhub admin
  • setup develop user without sudo (jupyteradd and ssh users)
  • - static IP
  • - service account, check bigquery accessible
  • - conda environment, test tf and torch
  • - modified jupyter template

for developer

  • - ssh for workstation and ssh-agent on workstation
  • - setup repo conda create .venv, .venv/bin/pip install pyenv, pipenv sync

NOTE

  • pre-study on GCE : 4hr
  • develop using docker : 2+4 hr
  • develop using gcloud : 2+3 hr
  • GPU setup on gcloud : 3 hr
  • CUDA, CUDAToolKit, PyTorch : 4hr + 2hr
  • Total : 15hr