This repository is a nni version and base on pytorchlighting to the model iDNA-ABF
**We do not use adversarial training in this repository, so the results may be little lower than the metrics in the paper, but they are still higher than the other methods. ** It just make easy for you to reproduce some results, and we haven't adjust parameters carefully. If you want the original parameters, please send email to me and I will give a version to you.
Now, We have provided a base parameters by One drive, you can download by this One drive share
train_ABF.py -> train and test model
train_model.py
fusion: nnictl create -p 9990 -c config_idna.yml
bert: nnictl create -p 9990 -c config_bert.yml
searh_space_idna.json[fusion]
searh_space_bert.json[bert]
data_module: onehot: (1) true -> auto tokenlize (2) false -> input directly
lightning_module: add models
The pytorchlighting parameters and results
{
"batch_size" : 64 ,
"lr" : 0.00005 ,
"dropout" : 0.7 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.950512
0.971124
0.902456
0.951867
0.967769
0.973189
Q
SE
SP
PPV
NPV
0.950512
0.978669
0.922355
0.926494
0.977396
{
"batch_size" : 16 ,
"lr" : 0.0001 ,
"dropout" : 0.5 ,
"alpha" : [
0.2 ,
0.8
]
}
ACC
AUC
MCC
F1
F2
F3
0.967645
0.976875
0.935292
0.967672
0.968145
0.968303
Q
SE
SP
PPV
NPV
0.967645
0.968461
0.96683
0.966884
0.96841
4mC_C.equisetifolia (ie9Je)
{
"batch_size" : 128 ,
"lr" : 0.0005 ,
"dropout" : 0.7 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.846995
0.902177
0.698171
0.83815
0.810056
0.801105
Q
SE
SP
PPV
NPV
0.846995
0.79235
0.901639
0.889571
0.812808
{
"batch_size" : 32 ,
"lr" : 0.0001 ,
"dropout" : 0.4 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.851291
0.923053
0.70327
0.854506
0.865735
0.869543
Q
SE
SP
PPV
NPV
0.851291
0.873386
0.829197
0.836425
0.867532
{
"batch_size" : 16 ,
"lr" : 0.00005 ,
"dropout" : 0.5 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.720425
0.775838
0.44199
0.710016
0.694501
0.68948
Q
SE
SP
PPV
NPV
0.720425
0.68453
0.75632
0.737473
0.70566
4mC_Tolypocladium (MUVm1)
{
"batch_size" : 32 ,
"lr" : 0.00005 ,
"dropout" : 0.1 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.737896
0.814666
0.475839
0.736054
0.732962
0.731937
Q
SE
SP
PPV
NPV
0.737896
0.730915
0.744878
0.741265
0.73462
{
"batch_size" : 64 ,
"lr" : 0.00005 ,
"dropout" : 0.5 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.858622
0.93164
0.717525
0.856616
0.849383
0.846999
Q
SE
SP
PPV
NPV
0.858622
0.844629
0.872615
0.868948
0.848859
{
"batch_size" : 128 ,
"lr" : 0.00005 ,
"dropout" : 0.3 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.910176
0.966053
0.820387
0.910591
0.913126
0.913974
Q
SE
SP
PPV
NPV
0.910176
0.914824
0.905528
0.906398
0.914025
6mA_C.equisetifolia (ICjHp)
{
"batch_size" : 64 ,
"lr" : 0.00005 ,
"dropout" : 0.7 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.722717
0.803041
0.44784
0.736364
0.75877
0.766545
Q
SE
SP
PPV
NPV
0.722717
0.774481
0.670953
0.906398
0.701823
6mA_D.melanogaster (ICjHp)
{
"batch_size" : 128 ,
"lr" : 0.0001 ,
"dropout" : 0.3 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.92109
0.969753
0.842273
0.920501
0.916392
0.91503
Q
SE
SP
PPV
NPV
0.92109
0.913673
0.928508
0.927431
0.914935
{
"batch_size" : 128 ,
"lr" : 0.00005 ,
"dropout" : 0.7 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.941973
0.979585
0.883982
0.942234
0.944781
0.945633
Q
SE
SP
PPV
NPV
0.941973
0.946486
0.93746
0.938019
0.945999
{
"batch_size" : 32 ,
"lr" : 0.0001 ,
"dropout" : 0.7 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.905367
0.966387
0.811073
0.903979
0.896094
0.893496
Q
SE
SP
PPV
NPV
0.905367
0.890913
0.919821
0.917434
0.893978
{
"batch_size" : 16 ,
"lr" : 0.0001 ,
"dropout" : 0.7 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.8628
0.94
0.87
Q
SE
SP
PPV
NPV
0.88
0.85
Mention: some problems lead to the interrupt during the training process, this is the result before interrupt.
{
"batch_size" : 64 ,
"lr" : 0.00005 ,
"dropout" : 0.5 ,
"alpha" : [
0.4 ,
0.6
]
}
ACC
AUC
MCC
F1
F2
F3
0.830164
0.902029
0.661092
0.825981
0.813953
0.810022
Q
SE
SP
PPV
NPV
0.830164
0.806128
0.8542
0.846837
0.81502
6mA_T.thermophile (rVXQG)
{
"batch_size" : 32 ,
"lr" : 0.00005 ,
"dropout" : 0.1 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.87473
0.94
0.89
Q
SE
SP
PPV
NPV
0.95
0.81
Mention: some problems lead to the interrupt during the training process, this is the result before interrupt.
{
"batch_size" : 64 ,
"lr" : 0.0001 ,
"dropout" : 0.7 ,
"alpha" : [
0.5 ,
0.5
]
}
ACC
AUC
MCC
F1
F2
F3
0.882131
0.951329
0.764302
0.881518
0.878778
0.877868
Q
SE
SP
PPV
NPV
0.882131
0.876961
0.887301
0.886123
0.87822