a Real-time image recognition project with RTL accelerator and ZNQ Architecture
本项目实现了一个实时目标检测系统,采用纯FPGA的RTL逻辑实现yolov3tiny的神经网络加速器,并利用zynq构建了图像采集及显示回路。
This project implements a real-time target detection system, using FPGA RTL logic to implement yolov3tiny's neural network accelerator, and using zynq to build an image acquisition and display loop.
正点原子 ALINX 7Z035B开发板
双目摄像头AN5642(0V5640)
Vivado 2021.1
Vitis 2021.1
Vivado HLS 2021.1
若您采用的板卡架构不是zynq-7000,请检查DSP型号是否为DSPE1,若不是,则需要对卷积IP进行适配后再编译运行。 if your board is not zynq7000,Check whether the DSP model is DSPE1. If not, you need to adapt the convolutional IP before compiling and running.
copy all files under the YOLOV3TINY-ZYNQ/sd
folder to your sd card.
Then insert the SD card into the zynq board.
Open vitis and set the folder VitisProject
(path=YOLOV3TINY-ZYNQ/VitisProject
) as your vitis workspace.
Then run the application named detection_displayloop
Run the project,the video stream will be ouput in HDMI_OUT port, connect it into any screen and you will see the result.The Running status parameters will be output in uart.
将YOLOV3TINY-ZYNQ/sd
中的所有文件拷贝至sd卡中,并将sd卡插入到开发板上。
打开vitis并将 .\YOLOV3TINY-ZYNQ\VitisProject
文件夹设为工作空间。
然后运行名为 detection_displayloop
的application。
程序烧录完成并开始自动运行后,视频流会从开发板的HDMI_OUT接口输出,连接视频接口到任意显示器即可观察到视频流的输出,连接UART口至PC,利用putty(波特率115200)也能观察到运行状态等参数输出。
IP
:Contains all custom IP cores that will be used
sd
:Contains already trained neural network parameters
VideoDetectionProject
: Contains the hardware design of the project, which is the Vivado design
VitisProject
: Contains all software design of the project, which call vitis
More detailed information is written in the readme under each folder.
IP
:包含项目用到的所有自定义IP
sd
:包含了已经训练好的神经网络参数
VideoDetectionProject
: 包含了硬件设计,即vivado工程
VitisProject
: 包含了软件设计,即VITIS工程
详细信息在各个子目录的readme中。
努力完善中... For any questions,feel free to contact email hglmunckid@163.com