/yolov3tiny-ZYNQ7000

a Real-time image recognition project with RTL accelerator and ZNQ Architecture

Primary LanguageVHDL

YOLOv3tiny-zynq7000

a Real-time image recognition project with RTL accelerator and ZNQ Architecture

简介

本项目实现了一个实时目标检测系统,采用纯FPGA的RTL逻辑实现yolov3tiny的神经网络加速器,并利用zynq构建了图像采集及显示回路。

Introduction:

This project implements a real-time target detection system, using FPGA RTL logic to implement yolov3tiny's neural network accelerator, and using zynq to build an image acquisition and display loop.

硬件构成(hardware):

正点原子 ALINX 7Z035B开发板
双目摄像头AN5642(0V5640)

开发环境(env):

Vivado 2021.1
Vitis 2021.1
Vivado HLS 2021.1

注意(attention):

若您采用的板卡架构不是zynq-7000,请检查DSP型号是否为DSPE1,若不是,则需要对卷积IP进行适配后再编译运行。 if your board is not zynq7000,Check whether the DSP model is DSPE1. If not, you need to adapt the convolutional IP before compiling and running.

Usage

step1-Set CNN parameters

copy all files under the YOLOV3TINY-ZYNQ/sd folder to your sd card.
Then insert the SD card into the zynq board.

step2-Run Vitis project

Open vitis and set the folder VitisProject (path=YOLOV3TINY-ZYNQ/VitisProject) as your vitis workspace.
Then run the application named detection_displayloop

step3-Run

Run the project,the video stream will be ouput in HDMI_OUT port, connect it into any screen and you will see the result.The Running status parameters will be output in uart.

快速上手

step1-设置神经网络模型参数

YOLOV3TINY-ZYNQ/sd中的所有文件拷贝至sd卡中,并将sd卡插入到开发板上。

step2-运行vitis项目

打开vitis并将 .\YOLOV3TINY-ZYNQ\VitisProject 文件夹设为工作空间。
然后运行名为 detection_displayloop的application。

step3-Run

程序烧录完成并开始自动运行后,视频流会从开发板的HDMI_OUT接口输出,连接视频接口到任意显示器即可观察到视频流的输出,连接UART口至PC,利用putty(波特率115200)也能观察到运行状态等参数输出。

File structure description

IP :Contains all custom IP cores that will be used
sd :Contains already trained neural network parameters
VideoDetectionProject : Contains the hardware design of the project, which is the Vivado design
VitisProject : Contains all software design of the project, which call vitis

More detailed information is written in the readme under each folder.

文件结构概述

IP :包含项目用到的所有自定义IP
sd :包含了已经训练好的神经网络参数
VideoDetectionProject : 包含了硬件设计,即vivado工程
VitisProject : 包含了软件设计,即VITIS工程

详细信息在各个子目录的readme中。

自定义神经网络模型

努力完善中... For any questions,feel free to contact email hglmunckid@163.com