The official implementation for our TNNLS paper Self-Supervised Time Series Representation Learning via Cross Reconstruction Transformer.
Git clone our repository, and install the required packages with the following command
git clone https://github.com/BobZwr/Cross-Reconstruction-Transformer.git
cd Cross-Reconstruction-Transformer
pip install -r requirements.txt
We use torch=1.13.0.
We provide the sample script for training and evaluating our CRT
# For Training:
python main.py --ssl True --sl True --load True --seq_len 256 --patch_len 8 --in_dim 9 --n_classes 6
# For Testing:
python main.py --ssl False --sl False --load False --seq_len 256 --patch_len 8 --in_dim 9 --n_classes 6
We also provide a subset of HAR dataset for training and testing.
If you found the codes and datasets are useful, please cite our paper
@article{zhang2022cross,
title={Cross reconstruction transformer for self-supervised time series representation learning},
author={Zhang, Wenrui and Yang, Ling and Geng, Shijia and Hong, Shenda},
journal={arXiv preprint arXiv:2205.09928},
year={2022}
}