/ScalableViT

This is code of paper "ScalableViT: Rethinking the Context-oriented Generalization of Vision Transformer"

Primary LanguagePython

ScalableViT

This is the code of paper "ScalableViT: Rethinking the Context-oriented Generalization of Vision Transformer".

It currently includes code and models for the following tasks:

Image Classification

Object Detection

Semantic Segmentation

Introduction

ScalableViT (Scalable Vision Transformer) inculdes Scalable Self-Attention (SSA) and Interactive Window-based Self-Attention (IWSA) mechanisms. SSA leverages two scaling factors to release dimensions of $query$, $key$, and $value$ matrices. IWSA establishes interaction between non-overlapping regions by re-merging independent $value$ tokens and aggregating spatial information from adjacent windows. By stacking the SSA and IWSA alternately, ScalableViT-S achieves $83.1 %$ acc on ImageNet-1K.

Architecture

Main results

Image Classification on ImageNet

Model #Param.(M) FLOPs(G) top1-acc
ScalableViT-S 32.4 4.2 83.1
ScalableViT-B 81.9 8.6 84.1
ScalableViT-L 104.9 14.7 84.4

Object Detection on COCO

RetinaNet

Backbone Pretrain Lr Schd #Param.(M) FLOPs(G) bbox mAP
ScalableViT-S ImageNet-1K 1x 36.4 238 45.2
ScalableViT-S ImageNet-1K 3x 36.4 238 47.8
ScalableViT-B ImageNet-1K 1x 85.6 330 45.8
ScalableViT-B ImageNet-1K 3x 85.6 330 48.0
ScalableViT-L ImageNet-1K 1x 112.6 457 46.8

Mask R-CNN

Backbone Pretrain Lr Schd #Param.(M) FLOPs(G) bbox mAP mask mAP
ScalableViT-S ImageNet-1K 1x 46.3 256 45.8 41.7
ScalableViT-S ImageNet-1K 3x 46.3 256 48.7 43.6
ScalableViT-B ImageNet-1K 1x 94.9 349 46.6 42.1
ScalableViT-B ImageNet-1K 3x 94.9 349 48.9 43.6
ScalableViT-L ImageNet-1K 1x 121.4 477 47.6 42.9

Semantic Segmentation on ADE20K

Semantic FPN

Backbone Method Crop Size Lr Schd #Param.(M) FLOPs(G) mIoU
ScalableViT-S Semantic FPN 512x512 80K 30.4 174 44.9
ScalableViT-B Semantic FPN 512x512 80K 79.0 270 48.4
ScalableViT-L Semantic FPN 512x512 80K 105.5 402 49.4

UperNet

Backbone Method Crop Size Lr Schd #Param.(M) FLOPs(G) mIoU mIoU (ms+flip)
ScalableViT-S UperNet 512x512 160K 56.5 931 48.5 49.4
ScalableViT-B UperNet 512x512 160K 107.0 1029 49.5 50.4
ScalableViT-L UperNet 512x512 160K 135.5 1162 49.7 50.7

Citation

@article{ScalableViT,
  title={ScalableViT: Rethinking the context-oriented generalization of vision transformer},
  author={Yang, Rui and Ma, Hailong and Wu, Jie and Tang, Yansong and Xiao, Xuefeng and Zheng, Min and Li, Xiu},
  journal={arXiv preprint arXiv:2203.10790},
  year={2022}
}