A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
NEWS (2023.5.8):
- Support of DeepFloyd-IF as the guidance model.
- Enhance Image-to-3D quality, support Image + Text condition of Make-it-3D.
image-to-3d-0123.mp4
text-to-3d.mp4
This project is a work-in-progress, and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly!
- Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion model, which diffuses in a latent space instead of the original image space. Therefore, we need the loss to propagate back from the VAE's encoder part too, which introduces extra time cost in training.
- We use the multi-resolution grid encoder to implement the NeRF backbone (implementation from torch-ngp), which enables much faster rendering (~10FPS at 800x800).
- We use the Adan optimizer as default.
git clone https://github.com/ashawkey/stable-dreamfusion.git
cd stable-dreamfusion
To avoid python package conflicts, we recommend using a virtual environment, e.g.: using conda or venv:
python -m venv venv_stable-dreamfusion
source venv_stable-dreamfusion/bin/activate # you need to repeat this step for every new terminal
pip install -r requirements.txt
To use image-conditioned 3D generation, you need to download some pretrained checkpoints manually:
- Zero-1-to-3 for diffusion backend.
We use
105000.ckpt
by default, and it is hard-coded inguidance/zero123_utils.py
.cd pretrained/zero123 wget https://huggingface.co/cvlab/zero123-weights/resolve/main/105000.ckpt
- Omnidata for depth and normal prediction.
These ckpts are hardcoded in
preprocess_image.py
.mkdir pretrained/omnidata cd pretrained/omnidata # assume gdown is installed gdown '1Jrh-bRnJEjyMCS7f-WsaFlccfPjJPPHI&confirm=t' # omnidata_dpt_depth_v2.ckpt gdown '1wNxVO4vVbDEMEpnAi_jwQObf2MFodcBR&confirm=t' # omnidata_dpt_normal_v2.ckpt
To use DeepFloyd-IF, you need to accept the usage conditions from hugging face, and login with huggingface-cli login
in command line.
For DMTet, we port the pre-generated 32/64/128
resolution tetrahedron grids under tets
.
The 256 resolution one can be found here.
By default, we use load
to build the extension at runtime.
We also provide the setup.py
to build each extension:
cd stable-dreamfusion
# install all extension modules
bash scripts/install_ext.sh
# if you want to install manually, here is an example:
pip install ./raymarching # install to python path (you still need the raymarching/ folder, since this only installs the built extension.)
Use Taichi backend for Instant-NGP. It achieves comparable performance to CUDA implementation while No CUDA build is required. Install Taichi with pip:
pip install -i https://pypi.taichi.graphics/simple/ taichi-nightly
- we assume working with the latest version of all dependencies, if you meet any problems from a specific dependency, please try to upgrade it first (e.g.,
pip install -U diffusers
). If the problem still holds, reporting a bug issue will be appreciated! [F glutil.cpp:338] eglInitialize() failed Aborted (core dumped)
: this usually indicates problems in OpenGL installation. Try to re-install Nvidia driver, or use nvidia-docker as suggested in ashawkey#131 if you are using a headless server.TypeError: xxx_forward(): incompatible function arguments
: this happens when we update the CUDA source and you usedsetup.py
to install the extensions earlier. Try to re-install the corresponding extension (e.g.,pip install ./gridencoder
).
- Ubuntu 22 with torch 1.12 & CUDA 11.6 on a V100.
First time running will take some time to compile the CUDA extensions.
#### stable-dreamfusion setting
### Instant-NGP NeRF Backbone
# + faster rendering speed
# + less GPU memory (~16G)
# - need to build CUDA extensions (a CUDA-free Taichi backend is available)
## train with text prompt (with the default settings)
# `-O` equals `--cuda_ray --fp16`
# `--cuda_ray` enables instant-ngp-like occupancy grid based acceleration.
python main.py --text "a hamburger" --workspace trial -O
# reduce stable-diffusion memory usage with `--vram_O`
# enable various vram savings (https://huggingface.co/docs/diffusers/optimization/fp16).
python main.py --text "a hamburger" --workspace trial -O --vram_O
# You can collect arguments in a file. You can override arguments by specifying them after `--file`. Note that quoted strings can't be loaded from .args files...
python main.py --file scripts/res64.args --workspace trial_awesome_hamburger --text "a photo of an awesome hamburger"
# use CUDA-free Taichi backend with `--backbone grid_taichi`
python3 main.py --text "a hamburger" --workspace trial -O --backbone grid_taichi
# choose stable-diffusion version (support 1.5, 2.0 and 2.1, default is 2.1 now)
python main.py --text "a hamburger" --workspace trial -O --sd_version 1.5
# use a custom stable-diffusion checkpoint from hugging face:
python main.py --text "a hamburger" --workspace trial -O --hf_key andite/anything-v4.0
# use DeepFloyd-IF for guidance (experimental):
python main.py --text "a hamburger" --workspace trial -O --IF
python main.py --text "a hamburger" --workspace trial -O --IF --vram_O # requires ~24G GPU memory
# we also support negative text prompt now:
python main.py --text "a rose" --negative "red" --workspace trial -O
## after the training is finished:
# test (exporting 360 degree video)
python main.py --workspace trial -O --test
# also save a mesh (with obj, mtl, and png texture)
python main.py --workspace trial -O --test --save_mesh
# test with a GUI (free view control!)
python main.py --workspace trial -O --test --gui
### Vanilla NeRF backbone
# + pure pytorch, no need to build extensions!
# - slow rendering speed
# - more GPU memory
## train
# `-O2` equals `--backbone vanilla`
python main.py --text "a hotdog" --workspace trial2 -O2
# if CUDA OOM, try to reduce NeRF sampling steps (--num_steps and --upsample_steps)
python main.py --text "a hotdog" --workspace trial2 -O2 --num_steps 64 --upsample_steps 0
## test
python main.py --workspace trial2 -O2 --test
python main.py --workspace trial2 -O2 --test --save_mesh
python main.py --workspace trial2 -O2 --test --gui # not recommended, FPS will be low.
### DMTet finetuning
## use --dmtet and --init_with <nerf checkpoint> to finetune the mesh at higher reslution
python main.py -O --text "a hamburger" --workspace trial_dmtet --dmtet --iters 5000 --init_with trial/checkpoints/df.pth
## test & export the mesh
python main.py -O --text "a hamburger" --workspace trial_dmtet --dmtet --iters 5000 --test --save_mesh
## gui to visualize dmtet
python main.py -O --text "a hamburger" --workspace trial_dmtet --dmtet --iters 5000 --test --gui
### Image-conditioned 3D Generation
## preprocess input image
# note: the results of image-to-3D is dependent on zero-1-to-3's capability. For best performance, the input image should contain a single front-facing object, it should have square aspect ratio, with <1024 pixel resolution. Check the examples under ./data.
# this will exports `<image>_rgba.png`, `<image>_depth.png`, and `<image>_normal.png` to the directory containing the input image.
python preprocess_image.py <image>.png
python preprocess_image.py <image>.png --border_ratio 0.4 # increase border_ratio if the center object appears too large and results are unsatisfying.
## zero123 train
# pass in the processed <image>_rgba.png by --image and do NOT pass in --text to enable zero-1-to-3 backend.
python main.py -O --image <image>_rgba.png --workspace trial_image --iters 5000
# if the image is not exactly front-view (elevation = 0), adjust default_polar (we use polar from 0 to 180 to represent elevation from 90 to -90)
python main.py -O --image <image>_rgba.png --workspace trial_image --iters 5000 --default_polar 80
# by default we leverage monocular depth estimation to aid image-to-3d, but if you find the depth estimation inaccurate and harms results, turn it off by:
python main.py -O --image <image>_rgba.png --workspace trial_image --iters 5000 --lambda_depth 0
python main.py -O --image <image>_rgba.png --workspace trial_image_dmtet --dmtet --init_with trial_image/checkpoints/df.pth
## zero123 with multiple images
python main.py -O --image_config config/<config>.csv --workspace trial_image --iters 5000
## render <num> images per batch (default 1)
python main.py -O --image_config config/<config>.csv --workspace trial_image --iters 5000 --batch_size 4
# providing both --text and --image enables stable-diffusion backend (similar to make-it-3d)
python main.py -O --image hamburger_rgba.png --text "a DSLR photo of a delicious hamburger" --workspace trial_image_text --iters 5000
python main.py -O --image hamburger_rgba.png --text "a DSLR photo of a delicious hamburger" --workspace trial_image_text_dmtet --dmtet --init_with trial_image_text/checkpoints/df.pth
## test / visualize
python main.py -O --image <image>_rgba.png --workspace trial_image_dmtet --dmtet --test --save_mesh
python main.py -O --image <image>_rgba.png --workspace trial_image_dmtet --dmtet --test --gui
### Debugging
# Can save guidance images for debugging purposes. These get saved in trial_hamburger/guidance.
# Warning: this slows down training considerably and consumes lots of disk space!
python main.py --text "a hamburger" --workspace trial_hamburger -O --vram_O --save_guidance --save_guidance_interval 5 # save every 5 steps
For example commands, check scripts
.
For advanced tips and other developing stuff, check Advanced Tips.
This work is based on an increasing list of amazing research works and open-source projects, thanks a lot to all the authors for sharing!
-
DreamFusion: Text-to-3D using 2D Diffusion
@article{poole2022dreamfusion, author = {Poole, Ben and Jain, Ajay and Barron, Jonathan T. and Mildenhall, Ben}, title = {DreamFusion: Text-to-3D using 2D Diffusion}, journal = {arXiv}, year = {2022}, }
-
Magic3D: High-Resolution Text-to-3D Content Creation
@inproceedings{lin2023magic3d, title={Magic3D: High-Resolution Text-to-3D Content Creation}, author={Lin, Chen-Hsuan and Gao, Jun and Tang, Luming and Takikawa, Towaki and Zeng, Xiaohui and Huang, Xun and Kreis, Karsten and Fidler, Sanja and Liu, Ming-Yu and Lin, Tsung-Yi}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition ({CVPR})}, year={2023} }
-
Zero-1-to-3: Zero-shot One Image to 3D Object
@misc{liu2023zero1to3, title={Zero-1-to-3: Zero-shot One Image to 3D Object}, author={Ruoshi Liu and Rundi Wu and Basile Van Hoorick and Pavel Tokmakov and Sergey Zakharov and Carl Vondrick}, year={2023}, eprint={2303.11328}, archivePrefix={arXiv}, primaryClass={cs.CV} }
-
RealFusion: 360° Reconstruction of Any Object from a Single Image
@inproceedings{melaskyriazi2023realfusion, author = {Melas-Kyriazi, Luke and Rupprecht, Christian and Laina, Iro and Vedaldi, Andrea}, title = {RealFusion: 360 Reconstruction of Any Object from a Single Image}, booktitle={CVPR} year = {2023}, url = {https://arxiv.org/abs/2302.10663}, }
-
Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation
@article{chen2023fantasia3d, title={Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation}, author={Rui Chen and Yongwei Chen and Ningxin Jiao and Kui Jia}, journal={arXiv preprint arXiv:2303.13873}, year={2023} }
-
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
@article{tang2023make, title={Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior}, author={Tang, Junshu and Wang, Tengfei and Zhang, Bo and Zhang, Ting and Yi, Ran and Ma, Lizhuang and Chen, Dong}, journal={arXiv preprint arXiv:2303.14184}, year={2023} }
-
Stable Diffusion and the diffusers library.
@misc{rombach2021highresolution, title={High-Resolution Image Synthesis with Latent Diffusion Models}, author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer}, year={2021}, eprint={2112.10752}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{von-platen-etal-2022-diffusers, author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf}, title = {Diffusers: State-of-the-art diffusion models}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/diffusers}} }
-
The GUI is developed with DearPyGui.
-
Puppy image from : https://www.pexels.com/photo/high-angle-photo-of-a-corgi-looking-upwards-2664417/
-
Anya images from : https://www.goodsmile.info/en/product/13301/POP+UP+PARADE+Anya+Forger.html
If you find this work useful, a citation will be appreciated via:
@misc{stable-dreamfusion,
Author = {Jiaxiang Tang},
Year = {2022},
Note = {https://github.com/ashawkey/stable-dreamfusion},
Title = {Stable-dreamfusion: Text-to-3D with Stable-diffusion}
}