/my_gpt2

Primary LanguagePythonMIT LicenseMIT

gpt2

This is our gpt2 model for dtu's mlops course exam project, it needs at least a single 8 * A100 nodes for pre-training gpt2-small(124M) on open source dataset OpenWebText for 4 days, so we choose to finetune gpt2-xl(1.5B) version on Shaespeare documents obased on our access to a server with 6 A100 GPUs.

Project structure

The directory structure of the project looks like this:

├── Makefile             <- Makefile with convenience commands like `make data` or `make train`
├── README.md            <- The top-level README for developers using this project.
├── data
│   ├── processed        <- The final, canonical data sets for modeling.
│   └── raw              <- The original, immutable data dump.
│
├── docs                 <- Documentation folder
│   │
│   ├── index.md         <- Homepage for your documentation
│   │
│   ├── mkdocs.yml       <- Configuration file for mkdocs
│   │
│   └── source/          <- Source directory for documentation files
│
├── models               <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks            <- Jupyter notebooks.
│
├── pyproject.toml       <- Project configuration file
│
├── reports              <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures          <- Generated graphics and figures to be used in reporting
│
├── requirements.txt     <- The requirements file for reproducing the analysis environment
|
├── requirements_dev.txt <- The requirements file for reproducing the analysis environment
│
├── tests                <- Test files
│
├── gpt2  <- Source code for use in this project.
│   │
│   ├── __init__.py      <- Makes folder a Python module
│   │
│   ├── data             <- Scripts to download or generate data
│   │   ├── __init__.py
│   │   └── make_dataset.py
│   │
│   ├── models           <- model implementations, training script and prediction script
│   │   ├── __init__.py
│   │   ├── model.py
│   │
│   ├── visualization    <- Scripts to create exploratory and results oriented visualizations
│   │   ├── __init__.py
│   │   └── visualize.py
│   ├── train_model.py   <- script for training the model
│   └── predict_model.py <- script for predicting from a model
│
└── LICENSE              <- Open-source license if one is chosen

Created using mlops_template, a cookiecutter template for getting started with Machine Learning Operations (MLOps).