DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume
Paper
Xingyu Miao, Yang Bai, Haoran Duan, Yawen Huang, Fan Wan, Xinxing Xu, Yang Long, Yefeng Zheng
Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
To get started, please create the conda environment by running
cd DSdepth
conda env create -f environment.yaml
conda activate dsdepth
To train a KITTI model, run:
python -m dsdepth.train \
--data_path <your_KITTI_path> \
--log_dir <your_save_path> \
--model_name <your_model_name>
For instructions on downloading the KITTI dataset, see Monodepth2
To train a CityScapes model, run:
python -m dsdepth.train \
--data_path <your_preprocessed_cityscapes_path> \
--log_dir <your_save_path> \
--model_name <your_model_name> \
--dataset cityscapes_preprocessed \
--split cityscapes_preprocessed \
--freeze_teacher_epoch 5 \
--height 192 --width 512
This assumes you have already preprocessed the CityScapes dataset. If you have not yet processed the CityScapes data set, please refer to ManyDepth for processing.
First you have run export_gt_depth.py
to extract ground truth files.
To evaluate a model on KITTI, run:
python -m dsdepth.evaluate_depth \
--data_path <your_KITTI_path> \
--load_weights_folder <your_model_path>
--eval_mono
--eval_split eigen
The ground truth depth files Here.
To evaluate a model on Cityscapes, run:
python -m dsdepth.evaluate_depth \
--data_path <your_cityscapes_path> \
--load_weights_folder <your_model_path>
--eval_mono \
--eval_split cityscapes
And to evaluate a model on Cityscapes (Dynamic region only), run:
python -m dsdepth.evaluate_depth_dynamic \
--data_path <your_cityscapes_path> \
--load_weights_folder <your_model_path>
--eval_mono \
--eval_split cityscapes
Please make sure you switch the dynamic region dataloader. And the dynamic object masks for Cityscapes dataset can download from Here.
You can download weights for some pretrained models here:
If you have any concern with this paper or implementation, welcome to open an issue or email me at xingyu.miao@durham.ac.uk.
If you find this code useful for your research, please consider citing the following paper:
@ARTICLE{10220114,
author={Miao, Xingyu and Bai, Yang and Duan, Haoran and Huang, Yawen and Wan, Fan and Xu, Xinxing and Long, Yang and Zheng, Yefeng},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
title={DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume},
year={2023},
doi={10.1109/TCSVT.2023.3305776}}
Our training code is build upon ManyDepth.