This is the code of our team (Zlbnlp) for the NLPCC 2018 Shared Task 2 Grammatical Error Correction.
- python3.6
- pytorch0.2.0 (use following commands to install from source)
export CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" # [anaconda root directory]
conda install numpy pyyaml mkl mkl-include setuptools cmake cffi typing
conda install -c mingfeima mkldnn
conda install -c pytorch magma-cuda80
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git reset --hard a03e5cb40938b6b3f3e6dbddf9cff8afdff72d1b
git submodule update --init
pip install -r requirements.txt
python setup.py install
- m2score scripts(to compute the metrics)
- libgrass-ui toolkit(word segmentation toolkit)
- fairseq-py (dependent on torch, use following commands to install)
cd CS2S+BPE+Emb/software/fairseq-py
pip install -r requirements.txt
python setup.py build
python setup.py develop
The data and embeddings can be found in the Zlbnlp_data. You need manually split the whole dataset into two parts.
- training dataset:contain 1,215,876 sentence pairs.Filepaths is CS2S+BPE+Emb/data/train.tok.src, CS2S+BPE+Emb/data/train.tok.trg
- development dataset:contain 5k sentence pairs.Filepaths is CS2S+BPE+Emb/data/dev.tok.src, CS2S+BPE+Emb/data/dev.tok.trg
- test data is source.txt.jieba.seg,using jieba toolkit.
cd CS2S+BPE+Emb/training/
chmod +x preprocess.sh
./preprocess.sh
- Training command
The command below is what we used to train an model on the NLPCC-2018 Task 2 dataset.
./train_embed.sh
The following is the command used to generate outputs and F0.5 score:
cd CS2S+BPE+Emb/
./run.sh ./data/source.txt.jieba.seg ./output/CS2S+BPE+Emb/ 0 ./training/models/mlconv_embed/model1
cd libgrass-ui/
./remove_spac_pkunlp_segment.sh
If you have questions, suggestions and bug reports, please email renhongkai27@gmail.com.