津南数字制造算法挑战赛YOLO Baseline
This YOLO V2 train on VOC datasets get more than 77mAp
the result training on jinnan datasets.
Model | Ap. |
---|---|
Test Online | 0.3319 |
Test Offline | 0.363 |
Local Val Result:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.363
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.720
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.417
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.372
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.412
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.285
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.421
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.422
- Python3
- Pytorch 1.0 or higher
- cv2
- coco API
download the pretrain model:
wget https://pjreddie.com/media/files/darknet53.conv.74
configure the config.py to set the dataset paths
python tools/split_datasets.py
python train_yolov2.py
valid the model:
python valid.py
The yolov3 is on the bad performs.They are still some bugs.