Zado-Tan's Stars
FlagOpen/FlagEmbedding
Retrieval and Retrieval-augmented LLMs
hpcaitech/ColossalAI
Making large AI models cheaper, faster and more accessible
PaddlePaddle/ERNIE
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.
xialeiliu/Awesome-Incremental-Learning
Awesome Incremental Learning
TAdeJong/beamer-universiteit-leiden
An unofficial LaTeX beamer template for scientific presentations in Universiteit Leiden layout
AntNLP/undergraduates-seminar
seminar for undergraduates
fordai/CCKS2019-Chinese-Clinical-NER
The word2vec-BiLSTM-CRF model for CCKS2019 Chinese clinical named entity recognition.
qiufengyuyi/event_extraction
baidu aistudio event extraction competition
ShannonAI/Entity-Relation-As-Multi-Turn-QA
Code for ACL 2019 : Entity-Relation Extraction as Multi-Turn Question Answering
ymcui/Chinese-BERT-wwm
Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm系列模型)
graykode/nlp-roadmap
ROADMAP(Mind Map) and KEYWORD for students those who have interest in learning NLP
pjreddie/darknet
Convolutional Neural Networks
Determined22/zh-NER-TF
A very simple BiLSTM-CRF model for Chinese Named Entity Recognition 中文命名实体识别 (TensorFlow)
MenglinLu/Chinese-clinical-NER
CCKS2019中文命名实体识别任务。从医疗文本中识别疾病和诊断、解剖部位、影像检查、实验室检验、手术和药物6种命名实体。现已实现基于jieba和AC自动机的baseline构建、基于BiLSTM和CRF的序列标住模型构建。bert的部分代码主要源于https://github.com/charles9n/bert-sklearn.git 感谢作者。 模型最终测试集得分0.81,还有较大改进空间。可以当做一个baseline。
Jekub/Wapiti
A simple and fast discriminative sequence labeling toolkit ( http://wapiti.limsi.fr )
kyzhouhzau/NLPGNN
1. Use BERT, ALBERT and GPT2 as tensorflow2.0's layer. 2. Implement GCN, GAN, GIN and GraphSAGE based on message passing.
AntNLP/seminar
antnlp seminar materials
StephanieWyt/NMN
Source code and datasets for ACL 2020 paper: Neighborhood Matching Network for Entity Alignment.
7ZFNLP/Knowledge-Analysis-and-Processing-2020Fall
2020知识处理与分析课程资料
graphdeeplearning/benchmarking-gnns
Repository for benchmarking graph neural networks