/natural_image_tone_enhancement

GAN-based naturalness-preserving image tone enhancement (PG 2019)

Primary LanguagePythonGNU Affero General Public License v3.0AGPL-3.0

natural_image_tone_enhancement

An implementation of "Naturalness-Preserving Image Tone Enhancement Using Generative Adversarial Networks", Pacific Graphics 2019 Best Paper

Introduction

This project uses GAN (Generative Adversarial Netowrk) for naturalness-preserving image tone enhancement with an automatically generated paired dataset. The paired dataset consists of input images from Five-K dataset[1] and the results of a previous classical filtering method[2] that produces drastic but possibly unnatural-looking tone enhancement results.

For more details regarding this technique, please refer to the paper

Checkpoint

For testing our network, please download the pretrained model and move the model to the "checkpoint" folder.

Contributors

Hyeongseok Son (sonhs@postech.ac.kr)

Citation

Cite our papers if you find this software useful.

  1. Hyeongseok Son, Gunhee Lee, Sunghyun Cho, Seungyong Lee, "Naturalness-Preserving Image Tone Enhancement Using Generative Adversarial Networks", Computer Graphics Form (special issue on Pacific Graphics 2019), Vol. 38, No.7, 2019.
@article{Son19CGF,
author = {Son, Hyeongseok and Lee, Gunhee and Cho, Sunghyun and Lee, Seungyong},
title = {Naturalness-Preserving Image Tone Enhancement Using Generative Adversarial Networks},
journal = {Computer Graphics Forum},
volume = {38},
number = {7},
pages = {277-285},
doi = {10.1111/cgf.13836},
year = {2019}
}

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using it. In addition, personalization technology through user preference analysis is under study.

Please checkout out other Coupe repositories in our Posgraph github organization.

Coupe Project