This is a Python DBM interface style wrapper around LMDB (Lightning Memory-Mapped Database).
It uses the existing lower level Python bindings py-lmdb.
This is especially useful on Windows, where otherwise dbm.dumb
is the default dbm
database.
pip install lmdbm
from lmdbm import Lmdb
with Lmdb.open("test.db", "c") as db:
db[b"key"] = b"value"
db.update({b"key1": b"value1", b"key2": b"value2"}) # batch insert, uses a single transaction
import json
from lmdbm import Lmdb
class JsonLmdb(Lmdb):
def _pre_key(self, value):
return value.encode("utf-8")
def _post_key(self, value):
return value.decode("utf-8")
def _pre_value(self, value):
return json.dumps(value).encode("utf-8")
def _post_value(self, value):
return json.loads(value.decode("utf-8"))
with JsonLmdb.open("test.db", "c") as db:
db["key"] = {"some": "object"}
obj = db["key"]
print(obj["some"]) # prints "object"
As of lmdb==1.2.1
the docs say that calling lmdb.Environment.set_mapsize
from multiple processes "may cause catastrophic loss of data". If lmdbm
is used in write mode from multiple processes, set autogrow=False
and map_size to a large enough value: Lmdb.open(..., map_size=2**30, autogrow=False)
.
See benchmark.py
and requirements-bench.txt
. Other storage engines which could be tested: wiredtiger
, berkeleydb
.
Storage engines not benchmarked:
- tinydb
(because it doesn't have built-in str/bytes keys)
items | lmdbm | lmdbm-batch | pysos | sqlitedict | sqlitedict-batch | dbm.dumb | semidbm | vedis | vedis-batch | unqlite | unqlite-batch |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.000 | 0.015 | 0.000 | 0.031 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
100 | 0.094 | 0.000 | 0.000 | 0.265 | 0.016 | 0.188 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
1000 | 1.684 | 0.016 | 0.015 | 3.885 | 0.124 | 2.387 | 0.016 | 0.015 | 0.015 | 0.016 | 0.000 |
10000 | 16.895 | 0.093 | 0.265 | 45.334 | 1.326 | 25.350 | 0.156 | 0.093 | 0.094 | 0.094 | 0.093 |
100000 | 227.106 | 1.030 | 2.698 | 461.638 | 12.964 | 238.400 | 1.623 | 1.388 | 1.467 | 1.466 | 1.357 |
1000000 | 3482.520 | 13.104 | 27.815 | 5851.239 | 133.396 | 2432.945 | 16.411 | 15.693 | 15.709 | 14.508 | 14.103 |
items | lmdbm | lmdbm-batch | pysos | sqlitedict | sqlitedict-batch | dbm.dumb | semidbm | vedis | vedis-batch | unqlite | unqlite-batch |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
100 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
1000 | 0.016 | 0.015 | 0.250 | 0.109 | 0.016 | 0.015 | 0.000 | ||||
10000 | 0.109 | 0.156 | 2.558 | 1.123 | 0.171 | 0.109 | 0.109 | ||||
100000 | 1.014 | 2.137 | 27.769 | 11.419 | 2.090 | 1.170 | 1.170 | ||||
1000000 | 10.390 | 24.258 | 447.613 | 870.580 | 22.838 | 214.486 | 211.319 |