RGBD-Tracking-Results-Datasets-and-Methods

An investigation for RGBD tracking. Hopefully, it can help other researchers become familiar with multi-modal tracking as soon as possible. This repository is started on 27/12/2023, and will keep on updating.


This repository will give a detail investigation of the RGBD tracking community, including the Datasets, Results, and the Methods.

  • Datasets
  • Results
  • Methods
  • ...

Survey Papers

  • RGBD---- A Survey of RGB-Depth Object Tracking. Zhou Ou, Ge Ying, Dawei Zhang*, Zhonglong Zheng. Journal of Computer-Aided Design & Computer Graphics 2024. [Paper]
  • RGBD/T ---- Multi-modal visual tracking: Review and experimental comparison. Zhang, Pengyu, Dong Wang*, and Huchuan Lu. Computational Visual Media 2024. [Paper]
  • RGBD---- Rgbd object tracking: An in-depth review. Jinyu Yang, Zhe Li, Song Yan, Feng Zheng*, Aleš Leonardis, Joni-Kristian Kämäräinen, Ling Shao. Arxiv 2022. [Paper]

Datasets

Real Data

Dataset Publish GitHub Introduction
D2CUBE CVRP'2023 D2CUBE Resource-Efficient RGBD Aerial Tracking
ARKittrack CVPR'2023 ARKittrack ARKitTrack: A New Diverse Dataset for Tracking Using Mobile RGB-D Data
RGBD1K AAAI'2023 RGBD1K RGBD1K: A Large-Scale Dataset and Benchmark for RGB-D Object Tracking
VOT-RGBD2022 VOT Community VOT-RGBD2022 The Tenth Visual Object Tracking VOT2022 Challenge Results
DepthTrack ICCV'2021 DepthTrack DepthTrack: Unveiling the Power of RGBD Tracking
CDTB ICCV'2019 CDTB CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark
STC ICCV'2019 STC code:TZYD Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints
PTB ICCV'2013 PTB Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines
BoBoT - BoBoT BoBot - Bonn benchmark on tracking

Results

CDTB DepthTrack VOT-RGBD2022
Methods Venue Speed Pr Re F-score Pr Re F-score A R EAO
UBPT IEEE Sensor Journal'2024 61.5 62.0 61.7 82.0 87.1 72.1
DepthRefiner ICME'2024 32/A100 66.9 68.4 67.7 51.3 50.7 51.0 79.7 73.3 60.3
TABBTrack PR'2024 27/RTX3090 72.1 72.2 72.1 62.2 61.5 61.8 82.1 87.4 72.2
AMATrack TIM'2024 73/RTX3070 73.2 78.6 75.8 62.9 60.7 61.8
MixRGBX Neurocomputing'2024 72.8 81.6 76.9 59.3 60.9 60.1
OneTrack CVPR'2024 60.7 60.4 60.9 87.2 81.9 72.7
UnTrack CVPR'2024 61.3 61.0 61.2 87.1 81.5 72.1
SDSTrack CVPR'2024 61.9 60.9 61.4 88.3 81.2 72.8
XTrack Arxiv'2024 59.8 59.7 59.7 86.5 81.2 71.4
Seqtrackv2 Arxiv'2024 62.9 63.4 63.2 81.9 91.8 75.5
MINet IVC'2024 60.3 60.5 60.4 81.6 87.7 72.3
KSTrack TCSVT'2024 60.0 57.4 58.7
CDAAT SPL'2024 59.5 66.5 73.7 69.9 57.8 60.3 59.0
FECD PRL'2024 63.7 62.4 63.0 57.8 60.3 59.0
SSLTrack PR'2024 31.4 65.0 62.0 63.5 56.5 49.1 52.5
VADT ICASSP'2024 60.6 60.3 61.0 81.6 87.3 72.1
ViPT CVPR'2023 59.2 59.6 59.4 87.1 81.5 72.1
FDAFT PRCV'2023 62.5 61.5 62.0
SPT AAAI'2023 25.3 65.4 72.6 68.8 52.7 54.9 53.8
HMAD ACMMMA'2023 50.0 62.6 59.7 61.1
DMTracker ECCVW'2022 66.2 65.8 66.0 61.9 59.7 60.8
ProTrack ACMMM'2022 74.7 76.7 65.6 58.3 57.3 57.8
DeT ICCV'2021 67.4 64.2 65.7 56.0 50.6 53.2
TSDM ICPR'2021 53.5
SiamOC ICSP'2021 41.1 34.6 37.6
DAL ICPR'2021 20 61.8
RGBD1K D2CUBE ARKittrack
Methods Venue Speed Pr Re F-score Pr Re F-score Pr Re F-score
DepthRefiner ICME'2024 32/A100 50.0 52.9 51.6 51.0 47.8 49.3
TABBTrack PR'2024 27/RTX3090 51.0 47.8 49.3
CDAAT SPL'2024 59.5 54.9 58.3 56.6
SSLTrack PR'2024 57.0 47.8 52.0
EMT CVPR'2023 120.3 65.3 60.9 63.0
RGBD1K AAAI'2023 25.3 54.5 57.8 56.1
HMAD ACMMMA'2023 50.0 57.3 55.2 56.2
DeT ICCV'2021 60.8 58.7 59.7 42.8 40.5 41.6
DAL ICPR'2021 52.9 56.5 54.7 44.6 32.9 37.8
TSDM ICPR'2021 52.1 49.2 50.6 38.9 29.2 33.4
STC PTB
Methods Venue Speed PR SR Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active
KSTrack TCSVT'2024 77.3 84.9 83.6 79.8 83.3 82.6 81.3 73.4 96.8 80.3 82.2
SSLTrack PR'2024 64.0
FECD PRL'2024 63.0 65.0 85.0 88.0 75.0 80.0 88.0 73.0 65.0 94.0 89.0 73.0
RGBD1K AAAI'2023 25.3 67.0
DMTracker ECCVW'2022 63.0
TSDM ICPR'2021 71.0 85.0 86.0 77.0 81.0 87.0 76.0 69.0 94.0 84.0 78.0
3s-RGBD Neurocomputing'2021 59.0 49.0 77.0 68.0 81.0 76.0 77.0 81.0 75.0 71.0 85.0 85.0 74.0
DAL ICPR'2021 20 85.0 64.0 78.0 86.0 81.0 76.0 84.0 83.0 80.0 72.0 93.0 78.0 82.0
WCO IEEE Sensors Journal'2020 78.0 67.0 80.0 76.0 75.0 78.0 73.0 66.0 86.0 85.0 72.0
RF-CFF Applied Soft Computing Journal'2020 62.0 79.0 78.0 69.0 73.0 81.0 68.0 57.0 91.0 80.0 68.0
CF-RGBD Engineering Applications of Artificial Intelligence'2020 61.0 75.0 80.0 71.0 71.0 79.0 68.0 56.0 91.0 80.0 67.0
CA3DMS TMM'2019 63 64.0 73.0 81.0 73.0 72.0 80.0 69.0 61.0 88.0 83.0 68.0
Depth-CCF GSKI'2019 70.0 65.0 79.0 71.0 73.0 78.0 70.0 64.0 84.0 84.0 67.0
H-FCN INFFUS'2019 19.47 81.0 74.0 80.0 82.0 77.0 78.0 74.0 83.0 87.0 80.0 78.0
OTR CVPR'2019 59.0 49.0 77.0 68.0 81.0 76.0 77.0 81.0 75.0 71.0 85.0 85.0 74.0
RGBD-OD CIS'2019 72.0 71.0 73.0 74.0 71.0 76.0 70.0 65.0 82.0 77.0 70.0
HST CCIFER'2019 66.0 62.0 77.0 69.0 69.0 74.0 68.0 62.0 79.0 78.0 66.0
ECO_TA IEEE Sensors Journal'2019 13.1 77.0 65.0 79.0 77.0 74.0 79.0 74.0 68.0 85.0 84.0 72.0
GFL Complexity'2019 20.74 82.0 75.0 78.0 81.0 74.0 82.0 73.0 81.0 84.0 79.0 68.0
DM-DCF ICPR'2018 8.3 76.0 58.0 77.0 72.0 73.0 75.0 72.0 69.0 78.0 82.0 69.0
CSRDCF_RGBD++ ECCVW'2018 77.0 65.0 76.0 75.0 73.0 80.0 72.0 70.0 79.0 79.0 72.0
MMDFF Complexity'2018 83.0 86.0 85.0 85.0 86.0 82.0 83.0 87.0 87.0 82.0 83.0
OAPCF IEEE Access'2018 17 70.0 66.0 68.0 69.0 70.0 75.0 67.0 73.0 76.0 71.0 69.0
KCFDF ICONIP'2017 10.49 45.0 72.0 75.0 55.0 67.0 73.0 57.0 43.0 87.0 69.0 59.0
DBM Sensors'2017 0.1 80.1 72.9 82.3 77.5 81.2 82.6
DLS ICPR'2016 77.0 69.0 73.0 80.0 70.0 73.0 74.0 66.0 85.0 72.0 75.0
OAPF CVIU'2016 0.9 64.2 84.8 77.2 72.7 73.4 85.1 68.4 64.4 85.1 77.7 71.4
3D-T CVPR'2016 81.0 64.0 73.0 80.0 71.0 75.0 75.0 73.0 78.0 79.0 73.0
DOHR FSKD'2016 45.0 49.0 42.0 48.0 42.0 50.0 43.0 38.0 54.0 54.0 41.0

Contributors

Questions

If you have any questions, please contact zhangyong_tang_jnu@163.com, and wechat: Tzy18861871359 is also welcomed.