The idea of this list is to collect shared data and algorithms around 3D Morphable Models. You are invited to contribute to this list by adding a pull request. The original list arised from the Dagstuhl seminar on 3D Morphable Models https://www.dagstuhl.de/19102 in March 2019.
This list also accompanies our survey on 3D Morphable models:
3D Morphable Face Models - Past, Present and Future
Bernhard Egger, William A.P Smith, Ayush Tewari, Stefanie Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani, Christian Theobalt, Volker Blanz, Thomas Vetter
ACM Transactions on Graphics, 2020
DOI: https://doi.org/10.1145/3395208
https://arxiv.org/abs/1909.01815
- Google group to help foster a research community interested in 3DMMs, share resources etc.: https://groups.google.com/forum/#!forum/3d-morphable-models
- Basel Face Model 2009: http://faces.cs.unibas.ch/bfm/?nav=1-0&id=basel_face_model
- Basel Face Model 2017: http://faces.cs.unibas.ch/bfm/bfm2017.html
- Large Scale 3D Morphable Model: https://xip.uclb.com/i/healthcare_tools/LSFM.html
- Liverpool-York Head Model: https://www-users.cs.york.ac.uk/~nep/research/LYHM/
- Multilinear Autoencoder for 3D Face Model Learning: http://mae.gforge.inria.fr/
- Statistical 3D Shape Models of Human Faces: http://facepage.gforge.inria.fr/
- Surrey Face Model https://cvssp.org/facemodel
- FLAME: Articulated Expressive Head Model: http://flame.is.tue.mpg.de/
- CoMA: Convolutional Mesh Autoencoder: http://coma.is.tue.mpg.de/
- ICT-FaceKIT - ICT Face Model: https://github.com/VGL-Group/ICT-FaceKit
- Albedo Morphable Model: https://github.com/waps101/AlbedoMM
- SMPL: A skinned Multi-Person Linear Model: http://smpl.is.tue.mpg.de/
- SMPL-X: Expressive Body Model - SMPL with articulated hands and expressive face: https://smpl-x.is.tue.mpg.de/
- MPII Human Shape Model: http://humanshape.mpi-inf.mpg.de/
- GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models: https://github.com/google-research/google-research/tree/master/ghum
- STAR: Sparse Articulated Human Body Model: http://star.is.tue.mpg.de/
- The York Ear Model: https://www-users.cs.york.ac.uk/~nep/research/YEM/
- SMAL A Skinned Multi-Animal Linear Model of 3D Animal Shape http://smal.is.tue.mpg.de/
- CAFM: A 3D Morphable Model for Animals https://github.com/sunyifan2017/CAFM-A-3D-Morphable-Model-for-Animals
- CAPE: Clothed Auto Person Encoding https://cape.is.tue.mpg.de/
- Large Scale Facial Model (LSFM) pipeline: https://github.com/menpo/lsfm
- Basel Face Registration pipeline: https://github.com/unibas-gravis/basel-face-pipeline
- Shape-aware surface reconstruction based on a statistical shape model prior: https://github.com/fbernardpi/sparsePdmFitting
- Fast Linear Assignment Problem solver: https://de.mathworks.com/matlabcentral/fileexchange/48448-fast-linear-assignment-problem-using-auction-algorithm-mex
- NmfSync for making pairwise (partial) permutations cycle-consistent (relevant for multi-matching): https://github.com/fbernardpi/NmfSync
- Transformation Synchronisation method for making pairwise transformations cycle-consistent (e.g. for solving the Generalised - - Procrustes Problem, or general multi-image registration): https://sites.google.com/site/fbernardpi/code
- Learning linear shape deformations with local support: https://sites.google.com/site/fbernardpi/code
- BU-3DFE, BU-4DFE: http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
- The Headspace dataset: https://www-users.cs.york.ac.uk/~nep/research/Headspace/
- The UoY 3D face dataset https://www-users.cs.york.ac.uk/~nep/research/UoYfaces/
- CoMA 3D face dataset (scans, registrations): http://coma.is.tue.mpg.de/
- D3DFACS dataset: raw scan data, registrations
- FaceCap dataset: http://gvv.mpi-inf.mpg.de/projects/FaceCap/
- MonFaceCap: http://gvv.mpi-inf.mpg.de/projects/MonFaceCap/
- Parametric Face Image Generator: https://github.com/unibas-gravis/parametric-face-image-generator
- VOCASET speech-4D head scan dataset: https://voca.is.tue.mpg.de/
- Speech-driven 3D Facial Motion Database (S3DFM): http://groups.inf.ed.ac.uk/trimbot2020/DYNAMICFACES/index.html
- The Florence 2D/3D hybrid face dataset: http://www.micc.unifi.it/vim/3dfaces-dataset/
- Parametric Mooney Face Generator: https://github.com/updown2/MooneyFaceGenerator
- FaceScape 3D dataset https://facescape.nju.edu.cn/
- AvatarMe scans https://github.com/lattas/AvatarMe
- A Model of Dynamic Human Shape in Motion: http://dyna.is.tue.mpg.de
- In the wild 3D pose dataset with ground truth: http://virtualhumans.mpi-inf.mpg.de/3DPW
- Human3.6m - 3.6 million 3D poses from 11 actors and in 17 scenarios: http://vision.imar.ro/human3.6m
- CAESAR body measurements database: https://store.sae.org/caesar/
- People in clothing scans: http://buff.is.tue.mpg.de
- Unite the People dataset: http://up.is.tuebingen.mpg.de
- CMU Panoptic dataset: http://domedb.perception.cs.cmu.edu/dataset.html
- Human Behavioral Multiview Imaging Dataset (HUMBI): https://humbi-data.net/
- Data from the GVV group: http://gvvperfcapeva.mpi-inf.mpg.de/
- MuCo-3DHP: http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPerson/
- MuPoTS-3D: http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPerson/
- MonoPerfCap: http://gvv.mpi-inf.mpg.de/projects/wxu/MonoPerfCap/
- IntrinsicMoCap: https://download.mpi-inf.mpg.de/projects/IntrinsicMoCap/
- MPI-INF-3DHP: http://gvv.mpi-inf.mpg.de/3dhp-dataset/
- MARCOnI: http://marconi.mpi-inf.mpg.de/
- EgoCap: http://gvv.mpi-inf.mpg.de/projects/EgoCap/
- MPII Human Shape: http://humanshape.mpi-inf.mpg.de/
- BinoCap: http://gvv.mpi-inf.mpg.de/projects/BinoCap/
- Inertial Depth Tracker Dataset: http://gvvperfcapeva.mpi-inf.mpg.de/public/InertialDepthTracker/index.php
- Performance Capture from Sparse Multi-view Video: http://resources.mpi-inf.mpg.de/perfcap/
- Performance Capture of Interacting Characters with Handheld Kinects: http://gvvperfcapeva.mpi-inf.mpg.de/public/KinectsMocap/
- 3D people in clothing from video: https://graphics.tu-bs.de/people-snapshot
- The York 3D Ear dataset: https://www-users.cs.york.ac.uk/~nep/research/YEM/
- Estimation of Human Body Shape in Motion with Wide Clothing: http://dressedhuman.gforge.inria.fr/
- YouTube 3D Hands (YT 3D): https://github.com/arielai/youtube_3d_hands
- 3D Morphable Model fitting using edge features: https://github.com/waps101/3DMM_edges
- Basic 3D Morphable Model fitting: https://github.com/anhttran/3dmm_basic
- A lightweight 3D Morphable Model fitting library: https://github.com/patrikhuber/eos
- Probabilistic Fitting: https://github.com/unibas-gravis/scalismo-faces
- Deep Neural Network parameter regression: https://talhassner.github.io/home/publication/2017_CVPR
- Expression-Net: https://github.com/fengju514/Expression-Net
- Face-Pose-Net: https://github.com/fengju514/Face-Pose-Net
- Shape-Net: https://github.com/anhttran/3dmm_cnn
- Extreme 3D Face Reconstruction: https://github.com/anhttran/extreme_3d_faces
- FLAME fitting: Chumpy-based framework, Tensorflow-based framework
- 3D face shape and expression regression network (RingNet): https://github.com/soubhiksanyal/RingNet
- Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network https://github.com/YadiraF/PRNet
- Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation https://github.com/matansel/pix2vertex
- 3D Morphable Models as Spatial Transformer Networks https://github.com/anilbas/3DMMasSTN
- Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric Regression https://github.com/AaronJackson/vrn
- Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set https://github.com/microsoft/Deep3DFaceReconstruction
- Facial Detail synthesis https://github.com/apchenstu/Facial_Details_Synthesis
- face3d: Python tools for processing 3D face https://github.com/YadiraF/face3d
- Photometric FLAME Fitting: https://github.com/HavenFeng/photometric_optimization
- Single Shot Multiple Face Reconstruction: https://github.com/kalyo-zjl/WM3DR
- Three-D Safari https://github.com/silviazuffi/smalst
- “not quite in-the-wild” (NoW) Challenge (3D face reconstruction from images benchmark): https://ringnet.is.tue.mpg.de
- 3D pose and shape (Neural Body Fitter): https://github.com/mohomran/neural_body_fitting
- SMPLify-X: Expressive Body Capture: 3D Hands, Face, and Body from a Single Image: https://github.com/vchoutas/smplify-x
- ExPose: Monocular Expressive Body Regression through Body-Driven Attention: https://github.com/vchoutas/expose
- Basel Illumination Prior 2017: http://gravis.dmi.unibas.ch/PMM/data/bip/
- Statistical Shape Modelling: https://gravis.dmi.unibas.ch/PMM/lectures/ssm/
- Probabilistic Fitting: https://gravis.dmi.unibas.ch/PMM/lectures/fitting/
- Semantic Morphable Model: https://gravis.dmi.unibas.ch/PMM/lectures/segmentation/
- Photo-realistic Face Manipulation: https://face-morpher.scalismo.org/
- 3D Face Reconstruction from a Single Image: https://cvl-demos.cs.nott.ac.uk/vrn/
- Pix2vertex : https://mybinder.org/v2/gh/eladrich/pix2vertex.pytorch/mybinder