labelme==3.8.0
- trans labelme to mask (0 for background)
- trans labelme to COCO format data
- trans labelme to VOC format data
- MAP for detection
- MIoU for instance segmentation
- Simple copy and paste for instance segmentation
- mask png to labelme format json data
Pred mask & Label mask
[ 0, 0, 1, ....
1, 1, 1, ....
0, 2, 2, ....
0, 0 ,0, ....
...
...]
0 for backdound, >= 1 for classes Info.txt
jt
qp
Results
-----------Acc of each classes-----------
back_ground : 97.387168 %
jt : 97.197456 %
qp : 0.000141 %
mean Pixel Acc: 64.86
-----------IoU of each classes-----------
back_ground : 93.342430 %
jt : 95.128109 %
qp : 0.000140 %
mIOU: 62.82
copy from https://github.com/Cartucho/mAP
What's New
- We add precision and recall statistics in output.
# <a name="6">mAP of all classes</a><a style="float:right;text-decoration:none;" href="#index">[Top]</a>
mAP = 74.78%
jt: tp 106, fp 18, fn 7, percision 0.855 recall 0.938
qp: tp 51, fp 25, fn 29, percision 0.671 recall 0.637
all classes: percision 0.785, recall 0.813
# <a name="7">Number of ground-truth objects per class</a><a style="float:right;text-decoration:none;" href="#index">[Top]</a>
jt: 113
qp: 80
Create the ground-truth files
```
<class_name> <left> <top> <right> <bottom> 1 or 0
```
- The
difficult
parameter is 1 otherwise 0, use it if you want the calculation to ignore a specific detection. - E.g. "image_1.txt":
tvmonitor 2 10 173 238 0 book 439 157 556 241 0 book 437 246 518 351 1 pottedplant 272 190 316 259 0
Create the detection-results files
- Create a separate detection-results text file for each image.
- Use matching names for the files (e.g. image: "image_1.jpg", detection-results: "image_1.txt").
- In these files, each line should be in the following format:
<class_name> <confidence> <left> <top> <right> <bottom>
- E.g. "image_1.txt":
tvmonitor 0.471781 0 13 174 244 cup 0.414941 274 226 301 265 book 0.460851 429 219 528 247 chair 0.292345 0 199 88 436 book 0.269833 433 260 506 336
color
- green -> TP: True Positives (object detected and matches ground-truth)
- red -> FP: False Positives (object detected but does not match ground-truth)
- pink -> FN: False Negatives (object not detected but present in the ground-truth)