/event_entity_coref_ecb_plus

A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

Primary LanguagePython

Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution

Introduction

This code was used in the paper:

"Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution"
Shany Barhom, Vered Shwartz, Alon Eirew, Michael Bugert, Nils Reimers and Ido Dagan. ACL 2019.

A neural model implemented in PyTorch for resolving cross-document entity and event coreference. The model was trained and evaluated on the ECB+ corpus.

使用机电楼服务器

ssh nlpgroup@202.204.62.204
密码同用户名

Prerequisites

  • Python 3.6
  • PyTorch 0.4.0
    • 原文使用CUDA 9.0和LINUX: pip install https://download.pytorch.org/whl/cu90/torch-0.4.0-cp36-cp36m-linux_x86_64.whl
    • 我使用cpuonly和win64: pip install http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl
  • spaCy 2.0.18
    • 安装完spaCy后,再Install the spacy en model with python -m spacy download en,注意这个安装需要管理员权限来完成软连接。
  • Matplotlib 3.0.2
  • NumPy 1.16.1(应该是1.17.3)
  • NLTK 3.4
  • scikit-learn 0.20.2
  • SciPy 1.2.1(应该是1.3.1)
  • seaborn 0.9.0
  • AllenNLP 0.5.1
  • perl 这玩意不是python包,是一个命令行工具。点击进入官网下载安装包并安装。 你需要新建一个python虚拟环境,然后安装上述包。

installation

把项目路径添加到python导包目录。 Add your project root path as PYTHONPATH. 方法很多。例如:

  • One way is editting your env parameter
  • another way is createding a .pth file in Python Interpreter Home 我的项目在E:\ProgramCode\Barhom2019 那么我在anaconda安装目录D:\ProgramFiles\Anaconda3下新建mypath.pth文件, 写入:E:\ProgramCode\Barhom2019。保存。 然后打开python,import Barhom2019,成功导入,不报错即可。

Testing Instructions

  • 下载。Download pretrained event and entity models and pre-processed data for the ECB+ corpus at https://drive.google.com/open?id=197jYq5lioefABWP11cr4hy4Ohh1HMPGK . 这玩意在谷歌网盘上,你要直接下能卡死。使用多网盘同步工具MultClude把谷歌网盘上的文件转到OneDrive上,在从OneDrive上下载。 参见 https://blog.csdn.net/zhmxubing/article/details/88681573.
  • 配置文件。Configure the model and test set paths in the configuration file test_config.json accordingly. 你看他的配置,就知道他本来怎么布置上一步下载的数据和模型的,按照他原来的结构布置你下载的数据和模型即可。我没改动,怕踩坑。
  • 其他数据。the script's configuration file (test_config.json) also requires:
    • An output file of a within-document entity coreference system on the ECB+ corpus (provided in this repo at data/external/stanford_neural_wd_entity_coref_out/ecb_wd_coref.json)
    • An output file of the document clustering algorithm that has been used in the paper (provided in this repo at data/external/document_clustering/predicted_topics)
  • 运行。Run the script predict_model.py
    • run with the command: python src/all_models/predict_model.py --config_path test_config.json --out_dir <output_directory>
      • 参数解释:
        • config_path - a path to a JSON file holds the test configuration (test_config.json). An explanation about this configuration file is provided in config_files_readme.md.
        • out_dir - the output directory.
      • 例子: python src/all_models/predict_model.py --config_path test_config.json --out_dir output
    • run in PyCharm
      • 在File - Settings - Project - Project interpreter中添加你的虚拟环境。
      • 在Run - Edit Configuration中点“+”,选python,则会新建一个运行配置,修改配置:
        • Script path: <项目根目录>\src\all_models\predict_model.py
        • Parameters: --config_path test_config.json --out_dir output
        • Environment variables: PYTHONUNBUFFERED=1
        • Python interpreter: 选你刚添加的虚拟环境
        • Work directory: <项目根目录>
    • Main output:
      • Two response (aka system prediction) files:
        • CD_test_entity_mention_based.response_conll - cross-document entity coreference results in CoNLL format.
        • CD_test_event_mention_based.response_conll - cross-document event coreference results in CoNLL format.
      • conll_f1_scores.txt - A text file contains the CoNLL coreference scorer's output (F1 score).

测试标注一致性

在src/all_models/train_model_my的498行附件,有检测代码, 用于查看是否存在错误的簇,即簇内指称类型不同

基于修改名字的语料扩增

增加正例的原理

例如:

  • [奥巴马]是美国总统,[他]明天将发表演讲。[奥巴马]12日在白宫发表演讲,[他]针对环境问题提出改革意见。

中的人名将被统一替换为同一个新人名,即:

  • [张三丰]是美国总统,[他]明天将发表演讲。[张三丰]12日在白宫发表演讲,[他]针对环境问题提出改革意见。

可以发现,所有的共指关系依旧成立(在忽视外部知识的前提下)。

增加反例的原理

pass

不激活语料扩增(使用原版代码)

在src/all_models/model_utils.py中,注释如下语句:

# 使用语料扩增(不使用就注释了这一句)
pairs_2 = cluster_pairs_to_mention_pairs_2(cluster_pairs)
# 使用语料扩增(不使用就注释了这一句)
pairs.extend(pairs_2)

如下内容是有关语料扩增的,如果不使用语料扩增则可以选择删除:

  • /lib/human_name_tools: 这是用于随机生成一个名字的包
  • /src/all_models/model_utils中的def cluster_pairs_to_mention_pairs_2(cluster_pairs)函数:这是用于替换原代码中的def cluster_pairs_to_mention_pairs(cluster_pairs)函数。

激活语料扩增

和上边的相反。

Training Instructions

  • 下载。The pre-processed data for ECB+ corpus shoud be put into data\processed\cybulska_setup\full_swirl_ecb. This data is available in two way:
  • 下载。Download GloVe embeddings from https://nlp.stanford.edu/projects/glove/ (we used glove.6B.300d).
  • 配置文件。Configure paths in the configuration file train_config.json (see details at config_files_readme.md).
  • the script's configuration file (train_config.json) also requires:
    • An output file of a within-document entity coreference system on the ECB+ corpus (provided in this repo at data/external/stanford_neural_wd_entity_coref_out)
  • Run the script train_model.py
    • Run with the command: python src/all_models/train_model.py --config_path train_config.json --out_dir <output_directory>
      • Param:
        • config_path - a path to a JSON file holds the training configuration (train_config.json). An explanation about this configuration file is provided in config_files_readme.md.
        • out_dir - an output directory.
      • Example: python src/all_models/train_model.py --config_path train_config.json --out_dir output
    • Run in PyCharm
    • Output:
      • Two trained models that are saved to the files:
        • cd_event_best_model - the event model that got the highest B-cubed F1 score on the dev set.
        • cd_entity_best_model - the entity model that got the highest B-cubed F1 score on the dev set.
      • summery.txt - a summary of the training.

Creating Data from Scratch

This repository provides pre-processed data for the ECB+ corpus (download from https://drive.google.com/open?id=197jYq5lioefABWP11cr4hy4Ohh1HMPGK). In case you want to create the data from scratch, do the following steps:

Loading the ECB+ corpus

  • ECB+ corpors should be put into \data\raw\ECBplus
  • extract the gold mentions and documents from the ECB+ corpus:
    • run with the command: python src/data/make_dataset.py --ecb_path <ecb_path> --output_dir <output_directory> --data_setup 2 --selected_sentences_file data/raw/ECBplus_coreference_sentences.csv
      • Param:
        • ecb_path - a directory contains the ECB+ documents (can be downloaded from http://www.newsreader-project.eu/results/data/the-ecb-corpus/).
        • output_dir - output directory.
        • data_setup - enter '2' to load the ECB+ data in the same evaluation setup as used in our experiments (see the setup description in the paper).
        • selected_sentences_file - path to a CSV file contains the selected sentences.
      • Example:E:\ProgramCode\Barhom2019Main\event_entity_coref_ecb_plus > python src/data/make_dataset.py --ecb_path data\raw\ECBplus --output_dir output --data_setup 2 --selected_sentences_file data/raw/ECBplus_coreference_sentences.csv
    • run in PyCharm
    • Main Output: The script saves for each data split (train/dev/test):
      • A json file contains its mention objects.
      • A text file contains its sentences. they are listed here:
      • ECB_All_Entity_gold_mentions.json
      • ECB_All_Event_gold_mentions.json
      • ECB_Dev_corpus.txt
      • ECB_Dev_Entity_gold_mentions.json
      • ECB_Dev_Event_gold_mentions.json
      • ECB_Test_corpus.txt
      • ECB_Test_Entity_gold_mentions.json
      • ECB_Test_Event_gold_mentions.json
      • ECB_Train_corpus.txt
      • ECB_Train_Entity_gold_mentions.json
      • ECB_Train_Event_gold_mentions.json
      • mention_stats.txt (statistic info)
  • After: All the output files( except statistic info) should be put into data\interim\cybulska_setup to works as input data in Feature extraction step.

Feature extraction

  • Allennlp: Allennlp do not officially support Windows. So there is a a little bug to be fixed in Windows. In allennlp/commands/common/util.py, comment out this command import resource.
  • Data from last step: The output files (JSON and text files) of Loading the ECB+ corpus step( make_dataset.py) should be put into data\interim\cybulska_setup.
  • Output files of SwiRL SRL system on the ECB+ corpus (already provided in this repo at data/external/swirl_output).
  • Download ELMo's files (options file and weights) from https://allennlp.org/elmo (we used Original 5.5B model files. It is at Pre-trained ELMo Models chapter in that website). Download and put it into data\external\elmo.
  • Feature extraction. Run the feature extraction script, which extracts predicate-argument structures, mention head and ELMo embeddings, for each mention in each split (train/dev/test):
    • run with command: python src/features/build_features.py --config_path build_features_config.json --output_path <output_path>
      • Param:
        • config_path - a path to a JSON file holds the feature extraction configuration (build_features_config.json). An explanation about this configuration file is provided in config_files_readme.md.
        • output_path - a path to the output directory.
      • Example: python src/features/build_features.py --config_path build_features_config.json --output_path output
    • run in PyCharm
    • Output: This script saves 3 pickle files, each contains a Corpus object representing each split:
      • train_data - the training data, used as an input to the script train_model.py.
      • dev_data - the dev data, used as an input to the script train_model.py.
      • test_data - the test data, used as an input to the script predict_model.py.
      • build_features_config.json - config info. It is a copy of the file which is given by config_path parameter in the instruction.
      • train_statistics.txt - statistic info
      • dev_statistics.txt - statistic info
      • test_statistics.txt - statistic info
  • All the output files( except the config info and statistic info ) should be put into \data\processed\cybulska_setup\full_swirl_ecb to works as input data in the training step.

Contact info

Contact Shany Barhom at shanyb21@gmail.com for questions about this repository.