/Quantformer

This is the official pytorch implementation for the paper: *Quantformer: Learning Extremely Low-precision Vision Transformers*.

Primary LanguagePythonApache License 2.0Apache-2.0

Quantformer

​ This is the official pytorch implementation for the paper: Quantformer: Learning Extremely Low-precision Vision Transformers. This repository contains differentiable searching and finetuning process for patch group assignment in group-wise quantization, and testing on ILSVRC2012 dataset using our proposed Quantformer.

Quick Start

Prerequisites

  • python>=3.6
  • pytorch>=1.6.0
  • torchvision>=0.7.0
  • other packages like numpy and timm

Dataset Preparation

Please follow the instruction in this to download the ImageNet dataset.SSD is highly recommended for training on ImageNet.

Pretrained Models

You can get full-precision pretrained models from DeiT and Swin Transformer.

Training and Testing

The following experiments were performed in TITAN Xp with 12GB memory.

Pretraining

You can run the following command to get the quantized pretrained model in low bitwidths with shared quantization strategy(group number is 1).

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py --model deit_tiny_patch16_224 --fpmodel fpdeit_tiny_patch16_224 --min-lr 1e-6 --batch-size 64 --data-path <imagenet path> --finetune <full-precision pretrained model path> --output_dir <output path> --epoch 120 --lr 1e-4 --bit-width 4 --group-num 1

Searching

After you get quantized pretrained model, you can run the following command to train the best patch group assignment using differentiable search.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py --model deit_tiny_patch16_224 --fpmodel fpdeit_tiny_patch16_224 --min-lr 1e-6 --batch-size 8 --data-path <imagenet path> --finetune <quantized pretrained model path> --fpfinetune <full-precision pretrained model path> --output_dir <output path> --epoch 1 --lr 2e-6 --bit-width 4 --aux-weight 20 --dm-weight 0.025 --group-num 8 --pnorm 2 --search True

Finetuning

After searching, You can run the following command to finetune the model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py --model deit_tiny_patch16_224 --fpmodel fpdeit_tiny_patch16_224 --min-lr 1e-6 --batch-size 32 --data-path <imagenet path> --finetune <quantized pretrained model path> --fpfinetune <full-precision pretrained model path> --output_dir <output path> --epoch 5 --lr 5e-6 --bit-width 4 --aux-weight 20 --dm-weight 0.025 --group-num 8 --pnorm 2 --search False

Acknowledgements

We thank the authors of following works for opening source their excellent codes.