Ch2r_ood_understanding


本文档为论文限定领域口语对话系统中超出领域话语的对话行为识别的部分实验代码。代码基于Python,需要用到的外部库有:

  • Keras(搭建神经网络)
  • Scikit-learn(最大熵,随机森林)
  • gensim(使用word2vec替换字典外的词)

实验涉及的方法主要有

  • 二阶段法(two-phase)
  • 最大熵法(ME(TFIDF+OOV))
  • 随机森林(RF(random_forest.py))
  • CNN(cnn.py)

语料库简介
语料库中有两个语料库可供选择:

  • AIML语料库(人造数据集)
  • CCL语料库(实际测试用到的数据集)

标签格式为:

categoryA # categoryB

大类维度为A,小类维度为B

其中 大类共4类,小类共16类

实验方法
预处理模块
预处理中有两个预处理脚本可供选择:

  • BOC(Bag-of-character 即按字划分,制造“字袋”)
  • BOW(Bag-of-word 即按词划分,制造“词袋”)

二阶段法
我们将分类切割成两部分,首先进行4个大类的分类,在大类的基础上,再对大类下的小类进行细分

这样做的合理性,在部分比赛参赛选手的做法中得到证实。理由是我们认为大类分类比小类分类更加容易,在大类之内进行小类分类,可以使得小类分类时范围减少,减少小类分类的难度。然而这样也有不合理性,比如,大类分类出错,则小类分类则无机会再分对,也即误差的传递性。

参考论文: Splusplus: A Feature-Rich Two-stage Classifier for Sentiment Analysis of Tweets

在代码中,针对每个大类对应的小类,重新训练了各自的分类器:

resultData,resultTarget = findAllTrainning('attitude',exam_bow_fea_data)         #找到其大类的所有小类
gb1 = sub_classfier(resultData,resultTarget)
resultData,resultTarget = findAllTrainning('shopping',exam_bow_fea_data)         #找到其大类的所有小类
gb2 = sub_classfier(resultData,resultTarget)
resultData,resultTarget = findAllTrainning('chatting',exam_bow_fea_data)         #找到其大类的所有小类
gb3 = sub_classfier(resultData,resultTarget)
resultData,resultTarget = findAllTrainning('trouble',exam_bow_fea_data)         #找到其大类的所有小类
gb4 = sub_classfier(resultData,resultTarget)

最大熵法
使用最大熵模型直接分类作为对照组

  • 最大熵模型在许多文本分类问题中都表现了他优越的性能,这里我们利用他作为对照组,观察后面CNN和RF的效果

参考论文: 使用最大熵模型进行中文文本分类

  • 当逻辑回归用于多分类问题时,可将损失函数改为交叉熵之后,则其成为最大熵模型LogisticRegression
  • 为了提高分类精度,针对部分在字典外的词,使用word2vec用外部语料(论文中使用SMP2015给出的微博数据,1000万条)进行OOV(out-of-vocabulary)替换(替换为与词汇表最近的词)

参考论文: 基于词矢量相似度的短文本分类

代码中,需要设置LogisticRegression的参数

clf = LogisticRegression(multi_class="multinomial",solver="newton-cg")

卷积神经网络

卷积神经网络在NLP中的使用多种多样,这里使用设置不同窗口大小的方法进行探索,即seq-CNN和Bow-CNN

参考论文: (Johnson and Zhang, NAACL 2015) Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

Seq-CNN
one-hot编码拼接而来

优点:词语之间顺序的得到保留 缺点:维度过大,容易造成维度灾难

Bow-CNN
Seq-CNN的基础上,进行降维

在确定窗口大小为n的情况,n之内的one-hot coding进行对应位数相加 优点:窗口内的语序信息丢失 缺点:窗口间的语序信息得到保留,维度得到降低

随机森林
传统的bagging融合模型,这里树的棵树使用交叉验证得到,树的深度使用经验值:

log(M),其中M为总特征数

评价指标

准确率: sum(test_data_label == clf.predict(test)) / (1.0 * len(test_data_label))