This repository contains a MatConvNet re-implementation for MDNet algorithm, which is ~10x and ~6x faster than the original matlab and python implementations, respectively.
|-------------------------------------------------------------------|
| | MDNet | pyMDNet | MDNet-Org (Ours) | MDNet-Opt (Ours) |
|-------------------------------------------------------------------|
| OTB-2015 | 67.9 | 65.2 | 66.4 | 67.2 |
|-------------------------------------------------------------------|
| VOT-2015 | 37.8 | -- | 36.8 | 39.3 |
|-------------------------------------------------------------------|
| FPS (OTB) | ~1 | ~2 | ~13 | ~13 |
|-------------------------------------------------------------------|
-
MDNet: the original matlab implementation
-
pyMDNet: python implementation
-
MDNet-Org (Ours): our implementation using default parameters (see
setting_mdnet_org
) -
MDNet-Opt (Ours): our implementation using our settings (see
setting_mdnet_opt
)
All trackers are benchmarked on OTB-2015 dataset using a single GPU (GTX 1080).
- NVIDIA GPU with compute capability 3.5+
- Matlab 2017a or above
- MatConvNet
To run pre-trained MDNet for OTB testing, please follow these steps:
-
Clone this repository into $MDNet:
git clone git@github.com:ZjjConan/Optimized-MDNet.git $MDNet
-
Complie your MatConvNet
-
Change paths
-
setup_optmdnet
:lib_path
for your own matconvnet -
run_evaluation_OPE
:savePath
for your tracking resultsvideoPath
for OTB datasetvideoAttr
for OTB subset (OTB2013 or OTB2015)
-
Models
mdnet_vot_otb:
training on VOT13/14/15 datasets for OTB testing.mdnet_otb_vot:
training on OTB dataset for VOT15 testing. -
For VOT testing
-
copy files in
vot/vot_tracker_settings
into your own vot workspace. -
changes paths in
tracking with different parameters.tracker_OptMDNet_Opt
ortracker_OptMDNet_Opt
for
-
please find detailed settings in pretraining fold for database setup and network training.
If you use this project in your research, please cite the original MDNet paper:
@InProceedings{nam2016mdnet,
author = {Nam, Hyeonseob and Han, Bohyung},
title = {Learning Multi-Domain Convolutional Neural Networks for Visual Tracking},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
This software is being made available for research purpose only. Check LICENSE file for details.