We use the ST-GCN based recognition model of [Yan et al. 2018] to evaluate generative models in our paper.
First, prepare the datasets needed for training and evaluation as following:
- Make
datasets
directory - Download the datasets from the link
- Put them in the
datasets
directory
The structure of datasets
directory will look like:
datasets/
├─ preprocess_styletransfer_classify.npz
├─ styletransfer_classify.npz
├─ styletransfer_generate.npz
├─ styletransfer_stylized_aberman_0.npz
├─ styletransfer_stylized_holden_0.npz
├─ styletransfer_stylized_ours_0.npz
├─ ...
Prepare pretrained models as following:
- Make
output
directory - Download the pretrained models from the link
- Put them in the
output
directory
The structure of output
directory will look like:
output/
├─ SRA/
│ ├─ latest_checkpoint.pth
├─ CRA/
│ ├─ latest_checkpoint.pth
Finally, you can evaluate the generated results according to each criteria. Please refer to base_options.py
or eval_options.py
under options
directory for model and evaluation specifications.
python evaluate.py --experiment_name CRA --criteria content --load_latest --mode eval
# or
python evaluate.py --experiment_name SRA --criteria style --load_latest --mode eval
You can train your own classifier from scratch by specifing the classifying criteria, e.g., content or style.
- For training a content classifier
python recognition.py --experiment_name [EXPERIMENT_NAME] --criteria content
- For training a style classifier
python recognition.py --experiment_name [EXPERIMENT_NAME] --criteria style