/finding_donors

Primary LanguageJupyter Notebook

finding_donors

This project from the cross-skilling ML course of Udacity.

Be careful: you must include visuals.py supplementary visualization code file in 'C:/Users/__Ayad__' to be imported and avoid any error if you want to run the code on your local machine. (Ayad) here is the user name on your own PC.

Description

CharityML is a fictitious charity organization located in the heart of Silicon Valley that was established to provide financial support for people eager to learn machine learning. After nearly 32,000 letters were sent to people in the community, CharityML determined that every donation they received came from someone that was making more than $50,000 annually. To expand their potential donor base, CharityML has decided to send letters to residents of California, but to only those most likely to donate to the charity. With nearly 15 million working Californians, CharityML has brought you on board to help build an algorithm to best identify potential donors and reduce overhead cost of sending mail. Your goal will be evaluate and optimize several different supervised learners to determine which algorithm will provide the highest donation yield while also reducing the total number of letters being sent.

Data

The modified census dataset consists of approximately 32,000 data points, with each datapoint having 13 features. This dataset is a modified version of the dataset published in the paper "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", by Ron Kohavi. You may find this paper online, with the original dataset hosted on UCI.

Features

  • age: Age
  • workclass: Working Class (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)
  • education_level: Level of Education (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool)
  • education-num: Number of educational years completed
  • marital-status: Marital status (Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)
  • occupation: Work Occupation (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)
  • relationship: Relationship Status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
  • race: Race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
  • sex: Sex (Female, Male)
  • capital-gain: Monetary Capital Gains
  • capital-loss: Monetary Capital Losses
  • hours-per-week: Average Hours Per Week Worked
  • native-country: Native Country (United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands)

Target Variable

  • income: Income Class (<=50K, >50K)