/Weighted_Softmax_Loss

Weighted Softmax Loss Layer for Caffe

Primary LanguageC++

Weighted_Softmax_Loss

Weighted Softmax Loss Layer for Caffe

Tested on NVIDIA/caffe 0.15, should work in BVLC/caffe 1.0.

Installation:

  1. Edit src/caffe/proto/caffe.proto, go to line 1201 and edit SoftmaxParameter as follows:
// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
message SoftmaxParameter {
  enum Engine {
    DEFAULT = 0;
    CAFFE = 1;
    CUDNN = 2;
  }
  optional Engine engine = 1 [default = DEFAULT];

  // The axis along which to perform the softmax -- may be negative to index
  // from the end (e.g., -1 for the last axis).
  // Any other axes will be evaluated as independent softmaxes.
  optional int32 axis = 2 [default = 1];
  optional float pos_mult = 3 [default = 1];
  optional int32 pos_cid = 4 [default = 1];
}
  1. Put weighted_softmax_loss_layer.hpp into include/caffe/layers.

  2. Put weighted_softmax_loss_layer.cpp and weighted_softmax_loss_layer.cu into src/caffe/layers.

  3. Compile Caffe.

Usage

  • In prototxt, use the following syntax:
layer {
  name: "loss"
  type: "WeightedSoftmaxWithLoss"
  bottom: "fc_end"
  bottom: "label"
  top: "loss"
  softmax_param {
    pos_cid: 1
    pos_mult: 2.0
  }
}

where pos_cid is the class id (starts with 0) to be weighted and pos_mult is the weight given to that class.

  • In python NetSpec, the above layer can be generated by:
from caffe import layers as L, params as P
n = caffe.NetSpec()
...
n.loss = L.WeightedSoftmaxWithLoss(n.fc_end, n.label, softmax_param=dict(pos_cid=1, pos_mult=2.0))

Credit

Originally by @shicai, fix to cpu_backwards proposed by @JayYangSS. I changed it to be compatible with newer versions of Caffe and included the cpu_backwards fix.