Citation - Abrol, A., Fu, Z., Salman, M. et al. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nat Commun 12, 353 (2021). https://doi.org/10.1038/s41467-020-20655-6
Reproducible Example Code (reprex) https://github.com/aabrol/SMLvsDL/tree/master/reprex
Reprex DL Classification/Regression Scripts
Slurm script - https://github.com/aabrol/SMLvsDL/tree/master/reprex/JSA_DL.sh
Bash for python script - https://github.com/aabrol/SMLvsDL/tree/master/reprex/run_DL.sh
Python script - https://github.com/aabrol/SMLvsDL/tree/master/reprex/run_DL.py
Utilies - https://github.com/aabrol/SMLvsDL/tree/master/reprex/utils.py
DL Model - https://github.com/aabrol/SMLvsDL/tree/master/reprex/models.py
Conda Environment - https://github.com/aabrol/SMLvsDL/tree/master/reprex/AA_DL.yml
conda (version 4.8.3) cudatoolkit (version 10.0.13) cudnn (version 7.6.5)
h5py (version 2.9.0) hdf5 (version 1.10.4) hypopt (version 1.0.9)
nipy (version 0.4.1) numpy (version 1.17.2) nibabel (version 2.5.0)
pandas (version 0.25.1) python (version 3.7.4) pytorch (version 1.2.0)
scikit-learn (version 0.21.3) scipy (version 1.2.0)
slurm (version 19.05.0) torchvision (version 0.4.0)
pytorch-lightning (version 0.10.0)
utils.py
models.py
makePartitionsUKBB.py
makePartitionsADNI.py
JSA_DR.sh
DR.py
JSA_DR_ADNI.sh
DR_ADNI.py
JSA_SML.sh
run_SML.py
JSA_SML_reg.sh
run_SML_reg.py
JSA_DL.sh
run_DL.sh
run_DL.py
JSA_DL_reg.sh
run_DL_reg.sh
run_DL_reg.py
tsneProjections.py
JSA_DL_saliency.sh
run_DL_saliency.sh
run_DL_saliency.py
Peng et al. model/pipeline used in Schulz et al.
JSA_run_train.sh
run_train.sh