Sébastien Herbreteau and Charles Kervrann
The repo supports python 3.8 + pytorch 1.8.1 + numpy 1.21.2 + skimage 0.19.2 + PIL 8.2.0.
To install in an environment using pip:
python -m venv .dct2net_env
source .dct2net_env/bin/activate
pip install /path/to/DCT2net
All the models are trained on BSD400 and tested on BSD68 and Set12. Simply modify the argument --in_folder
for training on other datatets. Only one model is trained for all noise levels between 1 and 55.
(Training on BSD400)
Model | Params | sigma=15 | sigma=25 | sigma=50 |
---|---|---|---|---|
DnCNN | 556k | 31.72 | 29.23 | 26.23 |
BM3D | - | 31.07 | 28.57 | 25.62 |
DCT2net | 29k | 31.09 | 28.64 | 25.68 |
To train a new model for gray denoising:
python ./trainer.py --in_folder /path/to/dataset
To denoise an image with DCT2net (remove --add_noise
if it is already noisy):
python ./dct2net_denoiser.py --sigma 25 --add_noise --in ./test_images/102061.png --out ./denoised.png --model_name ./saved_models/dct2net.p
To denoise an image with DCT/DCT2net (remove --add_noise
if it is already noisy):
python ./dct-dct2net_denoiser.py --sigma 25 --add_noise --in ./test_images/102061.png --out ./denoised.png --model_name ./saved_models/dct2net.p
This work was supported by Bpifrance agency (funding) through the LiChIE contract. Computations were performed on the Inria Rennes computing grid facilities partly funded by France-BioImaging infrastructure (French National Research Agency - ANR-10-INBS-04-07, “Investments for the future”).
We would like to thank R. Fraisse (Airbus) for fruitful discussions.