/harmful-memes-detection-resources

Resources (conference/journal publications, references to dataset) for harmful memes detection.

MIT LicenseMIT

Automatic Harmful Memes Detection Resources

Resources (conference/journal publications, references to datasets) for harmful memes detection.

Maintenance Last Commit Contribution_welcome

Overview

This repo contains relevant resources Automatic Harmful Memes Detection. We list a comprehensive and up-to-date information for harmful meme detection.

Harmful Memes Detection

Datasets

  • Harmful Memes:

  • Hateful Memes: Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine, The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes, 2020. [Paper] [Dataset]

  • Fine-grained Propaganda Memes: Dimitar Dimitrov, Bishr Bin Ali, Shaden Shaar, Firoj Alam, Fabrizio Silvestri, Hamed Firooz, Preslav Nakov and Giovanni Da San Martino, Detecting Propaganda Techniques in Memes, 2021 [Paper] [Dataset]

  • Troll Memes: Shardul Suryawanshi, Bharathi Raja Chakravarthi, Pranav Varma, Mihael Arcan, John P. McCrae and Paul Buitelaar, A Dataset for Troll Classification of TamilMemes, 2020. [Paper] [Dataset]

Relevant Surveys

Current SOTA

Title Types Task Dataset Task Type Approach AUC Acc F1 Details
Detecting Harmful Memes and Their Targets Harm Harmful vs Non-harmful HarMeme (Covid-19) B VisualBERT (Pretrained using MS COCO) 0.81 0.8
Very harmful vs Partially-harmful vs Non-harmful M 0.74 0.54
Target Identification of Harmful Memes M 0.76 0.66
MOMENTA: A Multimodal Framework for Detecting Harmful Memes and Their Targets Harm Harmful vs Non-harmful Harm-C B MOMENTA: CLIP, VGG-19, DistilBERT, Cross-modal attention fusion (CMAF) 0.84 0.83
Very harmful vs Partially-harmful vs Non-harmful M 0.77 0.55
Target Identification of Harmful Memes M 0.78 0.7
Harmful vs Non-harmful Harm-P B 0.9 0.88
Very harmful vs Partially-harmful vs Non-harmful M 0.87 0.67
Target Identification of Harmful Memes M 0.79 0.69
Racist or Sexist Meme? Classifying Memes beyond Hateful Hate Protected category (PC) identification FBHM ML CIMG
+ CTXT
+ LASER
+ LaBSE
0.96
Detecting attack type (AT) ML 0.97
“Subverting the Jewtocracy”: Online Antisemitism Detection Using Multimodal Deep Learning Hate Antisemitic content detection GAB B MFAS 0.91
Twitter 0.71
Antisemitism category classification GAB M 0.67
Twitter 0.68
Detecting Sexist MEME On The Web: A Study on Textual and Visual Cues Hate Automatic detection of sexist memes. The MEME B Late fusion 0.76 Multi-modal Late-fusion
Hand-crafted visual dec\scriptiors used: Low-level greyscale, colored, photographic and semantic features.
Bag-of-words approached used as textual features.
SVM
Memes in the Wild: Assessing the Generalizability
of the Hateful Memes Challenge Dataset
Hate Hateful Meme Detection FBHM CLIP (Linear Probe) 0.56
Pinterest B 0.57
Hate Speech in Pixels: Detection of Offensive Memes towards Automatic Moderation Hate Hateful Meme Detection Google BERT, VGG-16, MLP 0.83
Disentangling Hate in Online Memes Hate Hateful Meme Detection FBHM B DisMultiHate (BERT, Faster-RCNN, Disentangled representations) 0.83 0.76
MultiOFF 0.65
Exploring Hate Speech Detection in Multimodal Publications Hate Hatespech detection in multimodal publications MMHS150K B FCM (Feature concatenation model), Inception-V3, LSTM 0.73 0.68 0.70
AOMD: An Analogy-aware Approach to Offensive Meme Detection on Social Media Offensive Offensive (analogy) meme detection GAB Analogy-aware Multi-modal Representation Learning (Faster
R-CNN, ResNet50, Glove-based LSTM, BERT)
MLP
0.69 0.56
Reddit B 0.72 0.49
KnowMeme: A Knowledge-enriched Graph Neural Network Solution to Offensive Meme Detection Offensive Offensive meme detection Reddit YOLO V4, ConceptNET, GNN 0.73 0.49 Knowledge-aware Multimodal Entity Extraction (KMEE): YOLO V4
Knowledge-enriched Information Network Construction: ConceptNET
Supervised Offensive Meme Classification: GNN
GAB B 0.7 0.55
An approach to detect offence in Memes using Natural Language Processing(NLP) and Deep learning Offensive Offensive meme detection Offensive + Intensity dataset CNN, FastText, LSTM - Sigmoid 0.96
Offense intensity prediction M CNN, FastText, LSTM - Softmax 1
Multimodal Meme Dataset (MultiOFF) for Identifying Offensive Content in Image and Text Offensive Offensive content detection MultiOFF B Early fusion: Stacked LSTM/ BiLSTM/CNN-Text + VGG16 0.5 Early fusion technique (Stacked LSTM/ BiLSTM/CNN-Text + VGG16)
Detecting Propaganda Techniques in Memes Propaganda Detecting the type of propaganda techniques used
in memes
Facebook VisualBERT (Pretrained using MS COCO) 0.48 micro F1
MinD at SemEval-2021 Task 6: Propaganda Detection using Transfer Learning and Multimodal Fusion Propaganda Propaganda technique detection (Unimodal: Text) Facebook ML Ensemble: BERT, RoBERTa, XLNet, ALBERT, DistilBERT, DeBERTa, Embeddings, Char n-gram 0.59 micro F1, Team name: MinD
Volta at SemEval-2021 Task 6: Towards Detecting Persuasive Texts and Images using Textual and Multimodal Ensemble Propaganda Propaganda technique and span detection (Unimodal: Text) Facebook ML RoBERTa 0.48 micro F1, Team name: Volta
Alpha at SemEval-2021 Task 6: Transformer Based Propaganda Classification Propaganda Propaganda technique detection (Multimodal: Meme) Facebook ML RoBERTa, Embeddings 0.58 micro F1, Team name: Alpha
Detection of Cyberbullying Incidents on the Instagram Social Network Cyber-bullying Detecting incidents of cyber-bullying Instagram B SVD +(Unigram, 3-gram), kernelPCA+(meta data, image categories) + lin. SVM 0.87
A Dataset for Troll Classification of TamilMemes Cyber-bullying Detecting Troll memes TamilMemes B ResNET (Training: TamilMemes) 0.52 macro F1
ResNET (Training: TamilMemes + ImageNet) 0.52
MobileNet (Training: TamilMemes + ImageNet + Flickr1k) 0.47
ResNET (Training: TamilMemes + ImageNet + Flickr30k) 0.52
Multimodal Sentiment Analysis To Explore the Structure of Emotions - Multimodal emotiom detection Tumblr M Early fusion: Inception V3, LSTM 0.72
Multimodal Classification for Analysing Social Media Reddit Common space fusion: InceptionNet, fastText, SVM 0.87 0.85
Flickr 0.93 0.91