/data-engineering-zoomcamp

Free Data Engineering course!

Primary LanguageJupyter Notebook

Data Engineering Zoomcamp

Syllabus

Note: This is preliminary and may change

  • Course overview
  • Introduction to GCP
  • Docker and docker-compose
  • Running Postgres locally with Docker
  • Setting up infrastructure on GCP with Terraform
  • Preparing the environment for the course
  • Homework

More details

  • Data Lake
  • Workflow orchestration
  • Setting up Airflow locally
  • Ingesting data to GCP with Airflow
  • Ingesting data to local Postgres with Airflow
  • Moving data from AWS to GCP (Transfer service)
  • Homework

More details

Goal: Structuring data into a Data Warehouse

Instructor: Ankush

  • Data warehouse (BigQuery) (25 minutes)
    • What is a data warehouse solution
    • What is big query, why is it so fast, Cost of BQ, (5 min)
    • Partitoning and clustering, Automatic re-clustering (10 min)
    • Pointing to a location in google storage (5 min)
    • Loading data to big query & PG (10 min) -- using Airflow operator?
    • BQ best practices
    • Misc: BQ Geo location, BQ ML
    • Alternatives (Snowflake/Redshift)

Duration: 1-1.5h

Goal: Transforming Data in DWH to Analytical Views

Instructor: Victoria

  • Basics of analytics engineering (15 mins)
  • Developing a dbt project (Combination of coding + theory) (1:30)
  • Visualising the data in Google data studio (15 mins)

Duration: 2h

More details

Goal:

Instructor: Alexey

  • Distributed processing (Spark) (40 + ? minutes)
    • What is Spark, spark cluster (5 mins)
    • Explaining potential of Spark (10 mins)
    • What is broadcast variables, partitioning, shuffle (10 mins)
    • Pre-joining data (10 mins)
    • use-case
    • What else is out there (Flink) (5 mins)
  • Extending Orchestration env (airflow) (30 minutes)
    • Big query on airflow (10 mins)
    • Spark on airflow (10 mins)

Duration: 1-1.5h

Goal:

Instructor: Ankush

  • Basics
    • What is Kafka
    • Internals of Kafka, broker
    • Partitoning of Kafka topic
    • Replication of Kafka topic
  • Consumer-producer
  • Schemas (avro)
  • Streaming
    • Kafka streams
  • Kafka connect
  • Alternatives (PubSub/Pulsar)

Duration: 1.5h

  • Putting everything we learned to practice

Duration: 2-3 weeks

  • Upcoming buzzwords
    • Delta Lake/Lakehouse
    • Databricks
    • Apache iceberg
    • Data mesh
    • KSQLDB
    • Streaming analytics
    • Mlops

Duration: 30 mins

Overview

Architecture diagram

Technologies

  • Google Cloud Platform (GCP): Cloud-based auto-scaling platform by Google
    • Google Cloud Storage (GCS): Data Lake
    • BigQuery: Data Warehouse
  • Terraform: Infrastructure-as-Code (IaC)
  • Docker: Containerization
  • SQL: Data Analysis & Exploration
  • Airflow: Pipeline Orchestration
  • dbt: Data Transformation
  • Spark: Distributed Processing
  • Kafka: Streaming

Prerequisites

To get most out of this course, you should feel comfortable with coding and command line, and know the basics of SQL. Prior experience with Python will be helpful, but you can pick Python relatively fast if you have experience with other programming languages.

Prior experience with data engineering is not required.

Instructors

Tools

For this course you'll need to have the following software installed on your computer:

  • Docker and Docker-Compose
  • Python 3 (e.g. via Anaconda)
  • Google Cloud SDK
  • Terraform

See Week 1 for more details about installing these tools

Questions

Asking questions in Slack

You can ask any questions in the #course-data-engineering channel in DataTalks.Club slack

Please follow these recommendations when asking for help

FAQ

  • Q: I registered, but haven't received a confirmation email. Is it normal? A: Yes, it's normal. It's not automated. But you will receive an email eventually
  • Q: At what time of the day will it happen? A: Office hours will happen on Mondays at 17:00 CET. But everything will be recorded, so you can watch it whenever it's convenient for you
  • Q: Will there be a certificate? A: Yes, if you complete the project
  • Q: I'm 100% not sure I'll be able to attend. Can I still sign up? A: Yes, please do! You'll receive all the updates and then you can watch the course at your own pace.
  • Q: Do you plan to run a ML engineering course as well? A: Glad you asked. We do :)

Our friends

Big thanks to other communities for helping us spread the word about the course:

Check them out - they are cool!