This is all my notebooks, lab solutions, and assignments for the DeepLearning.AI Natural Language Processing Specialization on Coursera.
This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper.
- Use logistic regression, naïve Bayes, and word vectors to implement sentiment analysis, complete analogies, translate words, and use locality-sensitive hashing to approximate nearest neighbors.
- Use dynamic programming, hidden Markov models, and word embeddings to autocorrect misspelled words, autocomplete partial sentences, and identify part-of-speech tags for words.
- Use dense and recurrent neural networks, LSTMs, GRUs, and Siamese networks in TensorFlow and Trax to perform advanced sentiment analysis, text generation, named entity recognition, and to identify duplicate questions.
- Use encoder-decoder, causal, and self-attention to perform advanced machine translation of complete sentences, text summarization, question-answering, and to build chatbots. Learn T5, BERT, transformer, reformer, and more with 🤗 Transformers!
- Natural Language Processing with Classification and Vector Spaces
- Natural Language Processing with Probabilistic Models
- Natural Language Processing with Sequence Models
- Natural Language Processing with Attention Models
The files uploaded here are only for reference.