/nimue_js

A javascript interface to nimue (a covid vaccine model)

Primary LanguageJavaScriptMIT LicenseMIT

Tests

nimue.js

Requirements

The required system and R packages are listed in the Dockerfile

Setup

You can build the javascript bundle and data by running:

npm install
npm run build
# outputs a bundle in build/nimue.js
# outputs model data to the data directory

You can run the interface unit tests with:

npm test

You can run the end-to-end test with:

npm run e2e

Usage

You can access the model using ES6 import syntax:

import { runModel, createParameters } from './nimue.js'

Parameterisation

createParameters takes the minimum info to create a parameter set for the model.

function createParameters(
  population,
  contactMatrix,
  ttBeta,
  betaSet,
  nBeds,
  nICUBeds
)

The arguments are:

  • population - is an array of population sizes for each of the 17 age groups
  • contactMatrix - is the 17 x 17 contact matrix between age groups
  • ttBeta - is an array of timesteps at which the beta value will change
  • betaSet - is an array of beta values that will change in line with ttBeta.
  • nBeds - is the country's capacity for hospital beds
  • nICUBeds - is the country's capacity in Intensive Care

The default parameter set models 250 timesteps with no vaccination.

Optional parameters

createParameters returns an object with methods for further parameterisation.

Parameters.withHorizon(start = 0, end = 250);

This changes the start and end timestep of the simulation. end must be greater than or equal to start.

Parameters.withMaxVaccine(timesteps = [0], maxVaccines = [0]);

This models changes in the number of vaccines available each day. At each timestep in timesteps the corresponding number of maxVaccines will be made available. The timesteps and maxVaccines arrays must be the same size.

Parameters.withVaccineEfficacy(diseaseEfficacy = .95, infectionEfficacy = .95)

This models the efficacy of the vaccine in the simulation. diseaseEfficacy is a value between 0 and 1 that reduces the rate of hospitalisation $\phi(a)$ by a constant factor, influencing the proportion of cases that are severe. infectionEfficacy is a value between 0 and 1 that reduces the transmission parameter ($\beta$) by a constant factor, influencing the probability of infection.

Parameters.withStrategy(strategy, coverage);

This models a predefined prioritisation strategy for vaccine distribution. This can be either "elderly" or "all". coverage parameterised the maximum population coverage for the strategy.

Parameters.withPrioritisationMatrices(m, coverage);

This models a prioritisation strategy based on a matrix m. coverage parameterised the maximum population coverage for the strategy.

Parameters.withVaccineDuration(timesteps);

Sets the duration of vaccine efficacy in the model

Running the model

runModel takes parameter sets from the previous section and produces model outputs.

function runModel(parameters, atol=1e-3, rtol=1e-3)

The atol and rtol parameters are for absolute and relative tolerances for the ODE solver.

runModel will return object with the following keys:

Names: The names of the columns of the table. The names include:

  • t: the time step
  • S: susceptible
  • E (E1 & E2): Latent infections
  • IMild: Unhospitalised infection
  • R: (R1 & R2): Recovered
  • ICase (ICase1 & ICase2): To-be hospitalised infection
  • IOxGetLive (IOxGetLive1 & IOxGetLive2): Get oxygen, go on to survive
  • IOxGetDie (IOxGetDie1 & IOxGetDie2): Get oxygen go on to die
  • IOxNotGetLive (IOxNotGetLive1 & IOxNotGetLive2): Do not get oxygen, go on to survive
  • IOxNotGetDie (IOxNotGetDie1 & IOxNotGetDie2): Do not get oxygen, go on to die
  • IMVGetLive (IMVGetLive1 & IMVGetLive2): Get mechanical ventilation, go on to live
  • IMVGetDie (IMVGetDie1 & IMVGetDie2): Get mechanical ventilation, go on to die
  • IMVNotGetLive (IMVNotGetLive1 & IMVNotGetLive2): Do no get mechanical ventilation, go on to live
  • IMVNotGetDie (IMVNotGetDie1 & IMVNotGetDie2): Do no get mechanical ventilation, go on to die
  • IRec (IRec1 & IRec2): Recovering from ICU
  • D: Dead

All columns except the first represent the size of the population in that state at each timestep. These columns are further broken down into 17 age groups and 6 vaccination states. The age groups represent 5 year age bands from 0 to 80+. The first vaccination state is unvaccinated, the second state is recently vaccinated, and the remaining states represent subpopulations who have been vaccinated further in the past.

E.g. the "S[1, 1]" column represents the count for the unvaccinated, susceptible population in the first age group.

Y is a 2D array representing the rows of the table.

Examples

Here we show how some example scenarios can be coded up:

No vaccination

The default parameters will model 250 timesteps of the simulation, with no vaccination.

Here is an example default run for Nigeria:

import nigeriaData from './data/NGA.json';
const ttBeta  = [0, 10,  20,  30,  40 ];
const betaSet = [3, 3.2, 2.5, 1.9, 5.2];
const results = runModel(
  createParameters(
    nigeriaData.population,
    nigeriaData.contactMatrix,
    ttBeta,
    beta,
    10000000000,
    10000000000
  )
);

Note: this package does not provide estimations of beta

Vaccines becoming available

We can simulate 100,000 vaccines becoming available at timestep 20.

import nigeriaData from './data/NGA.json';
const ttBeta  = [0, 10,  20,  30,  40 ];
const betaSet = [3, 3.2, 2.5, 1.9, 5.2];
const results = runModel(
  createParameters(
    nigeriaData.population,
    nigeriaData.contactMatrix,
    ttBeta,
    beta,
    10000000000,
    10000000000
  ).withMaxVaccine([0, 20], [0, 100000])
);

Vaccine profile

We can simulate a vaccine which only mitigates onward infection.

import nigeriaData from './data/NGA.json';
const ttBeta  = [0, 10,  20,  30,  40 ];
const betaSet = [3, 3.2, 2.5, 1.9, 5.2];
const results = runModel(
  createParameters(
    nigeriaData.population,
    nigeriaData.contactMatrix,
    ttBeta,
    beta,
    10000000000,
    10000000000
  ).withVaccineEfficacy(0, .7)
);

Targeting an age group

We can simulate a strategy which targets only the elderly.

import nigeriaData from './data/NGA.json';
const ttBeta  = [0, 10,  20,  30,  40 ];
const betaSet = [3, 3.2, 2.5, 1.9, 5.2];
const results = runModel(
  createParameters(
    nigeriaData.population,
    nigeriaData.contactMatrix,
    ttBeta,
    beta,
    10000000000,
    10000000000
  )
  .withMaxVaccine([0, 20], [0, 100000])
  .withStrategy('elderly', .8) // the two options here are 'elderly' and 'all'
);

Prioritisation Matrices

We can model more complex strategies using prioritisation matrices. We provide 2 in the country JSON files: etagePriority and whoPriority

import nigeriaData from './data/NGA.json';
const ttBeta  = [0, 10,  20,  30,  40 ];
const betaSet = [3, 3.2, 2.5, 1.9, 5.2];
const results = runModel(
  createParameters(
    nigeriaData.population,
    nigeriaData.contactMatrix,
    ttBeta,
    beta,
    10000000000,
    10000000000
  )
  .withMaxVaccine([0, 20], [0, 100000])
  .withPrioritisationMatrix(nigeriaData.etagePriority, .8)
);

Reff

We provide function to estimate Reff from model outputs:

function reff(
  output,
  beta,
  population,
  parameters,
  contactMatrixScaledAge,
  tSubset = null
)

Parameters:

  • output - the y component of the model output returned from runModel
  • beta - an array with corresponding beta values for the first timesteps of the output
  • population - an array with population counts for each age group (called population in the country json files)
  • parameters - the parameters object from getParameters
  • mixingMatrix - a 2D array representing an age scaled mixing matrix (called contactMatrixScaledAge in the country json files)
  • tSubset - an array of timesteps to calculate Reff for

This returns an array of Reff values for the output at the timesteps in tSubset. If tSubset is null, it will return Reff values for all the beta values given.