/pytorch-ort

Accelerate PyTorch models with ONNX Runtime

Primary LanguagePythonMIT LicenseMIT

Accelerate PyTorch models with ONNX Runtime

ONNX Runtime for PyTorch accelerates PyTorch model training using ONNX Runtime.

It is available via the torch-ort python package.

This repository contains the source code for the package as well as instructions for running the package and samples demonstrating how to do so.

Pre-requisites

You need a machine with at least one NVIDIA or AMD GPU to run ONNX Runtime for PyTorch.

You can install and run torch-ort in your local environment, or with Docker.

Run in a Python environment

Default dependencies

By default, torch-ort depends on PyTorch 1.8.1, ONNX Runtime 1.8 and CUDA 10.2.

  1. Install CUDA 10.2

  2. Install CuDNN 7.6

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch-ort

Explicitly install for NVIDIA CUDA 10.2

  1. Install CUDA 10.2

  2. Install CuDNN 7.6

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch==1.8.1
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_stable_cu102.html
    • (or pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_cu102.html to use nightly build)
    • pip install torch-ort

Explicitly install for NVIDIA CUDA 11.1

  1. Install CUDA 11.1

  2. Install CuDNN 8.0

  3. Install torch-ort and dependencies

    • pip install ninja
    • pip install torch==1.8.1
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_stable_cu111.html
    • (or pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_cu111.html to use nightly build)
    • pip install torch-ort

Explicitly install for AMD ROCm 4.2

  1. Install ROCm 4.2 base package (instructions)

  2. Install ROCm 4.2 libraries (instructions)

  3. Install ROCm 4.2 RCCL (instructions)

  4. Install torch-ort and dependencies

    • pip install ninja
    • pip install --pre torch -f https://download.pytorch.org/whl/nightly/rocm4.2/torch_nightly.html
    • pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_stable_rocm42.html
    • (or pip install --pre onnxruntime-training -f https://onnxruntimepackages.z14.web.core.windows.net/onnxruntime_nightly_rocm42.html to use nightly build)
    • pip install torch-ort

Use torch-ort from nightly build

to use torch-ort from nightly build, replace

  • pip install torch-ort

with

  • pip install -U --pre torch-ort -f https://onnxruntimepackages.z14.web.core.windows.net/torch_ort_nightly.html

Run using Docker

On NVIDIA CUDA 11.1

The docker directory contains dockerfiles for the NVIDIA CUDA 11.1 configuration.

  1. Build the docker image

    docker build -f Dockerfile.ort-cu111-cudnn8-devel-ubuntu18.04 -t ort.cu111 .

  2. Run the docker container using the image you have just built

    docker run -it --gpus all --name my-experiments ort.cu111:latest /bin/bash

On AMD Rocm 4.2

The docker directory contains dockerfiles for the NVIDIA CUDA 11.1 configuration.

  1. Build the docker image

    docker build -f Dockerfile.ort-rocm4.2-pytorch1.8.1-ubuntu18.04 -t ort.rocm42 .

  2. Run the docker container using the image you have just built

    docker run -it --rm \
      --privileged \
      --device=/dev/kfd \
      --device=/dev/dri \
      --group-add video \
      --cap-add=SYS_PTRACE \
      --security-opt seccomp=unconfined \
      --name my-experiments \
      ort.rocm42:latest /bin/bash
    

Test your installation

  1. Clone this repo
  • git clone git@github.com:pytorch/ort.git
  1. Install extra dependencies
  • pip install wget pandas sklearn transformers
  1. Run the training script
  • python ./ort/tests/bert_for_sequence_classification.py

Add ONNX Runtime for PyTorch to your PyTorch training script

from torch_ort import ORTModule
model = ORTModule(model)

# PyTorch training script follows

License

This project has an MIT license, as found in the LICENSE file.