Aerodynamic Model Identification using the Two-Step Approach

Aircraft aerodynamic model identification using flight test data using the two-step approach of system identification has been performed.

Main script to be run : main.m Refer to the instructions mentioned in the comments of the above file.

File list :

Data Files :

simdata2018 > da3211.m, dadoublet.m, de3211.m, dr3211.m, drdoublet.m Data files that were provided with the assignment. Contain flight test data for various manoeuvres.

Functions:

aero_fm.m : Computes aerodynamic forces and moments

calc_f.m : Defines state transition functions

calc_G.m : Computes process noise coefficient matrix

calc_h.m : Defines observation functions

data_preprocessing.m : Pre-processes flight data

getposition.m : Compute aircraft positions from aircraft and win velocities

integration_rk4.m : Fourth order Runge-Kutta integrator

jacob.m : Computes Jacobian of the input function

kalman_filter.m : Extended Kalman Filter (EKF) implementation

LR_states.m : Compute state variables of the linear regression model

param_est.m : Ordinary Least Squares parameter estimator

param_est_alternate.m : Parameter estimator for the alternate model structure

param_val.m : Validation of the computed parameter values

param_val_alternate.m : Validation of computed parameter values for the alternate model structure

Scripts :

generate_noise_vectors.m : Generate sensor noise vectors

main.m : Main script

params.m : Import aircraft parameters