didactic-potato

test $\sqrt{3x-1}+(1+x)^2$

\usepackage{amsmath}

$\mathcal{JS}(M(x), T_d(x)) = 0.5*\mathcal{KL}(M(x)||m)+ 0.5*\mathcal{KL}(T_d(x)||m)$

đs $\mathcal{ZFR} = 1 - \frac{1}{nf}\sum_{i=0}^{n_f} \mathcal{JS}(M(x_i), T_d(x_i))$

$AIN = \frac{r_t (M_u, M_{orig}, \alpha)}{r_t (M_s, M_{orig}, \alpha)}$

$ \mbox{efficacy}(w;D) = \begin{cases} \frac{1}{i(w; D)}, \mbox{if i(w;D) > 0} \ \infty, \mbox{otherwise} \end{cases} $

$ f(n) = \begin{cases} n/2 & \quad \text{if } n \text{ is even}\ -(n+1)/2 & \quad \text{if } n \text{ is odd} \end{cases} $

($\mathcal{ZFR} = 0$)

$\mathcal{JS}(M(x), T_d(x)) = 0.5*\mathcal{KL}(M(x)||m)+ 0.5*\mathcal{KL}(T_d(x)||m)$

if $\mbox{i(w;D) > 0}$, then $\mbox{efficacy}(w;D) = \frac{1}{i(w; D)}$;

otherwise $\mbox{efficacy}(w;D) = \infty$