test
$\sqrt{3x-1}+(1+x)^2$
\usepackage{amsmath}
$\mathcal{JS}(M(x), T_d(x)) = 0.5*\mathcal{KL}(M(x)||m)+ 0.5*\mathcal{KL}(T_d(x)||m)$
đs
$\mathcal{ZFR} = 1 - \frac{1}{nf}\sum_{i=0}^{n_f} \mathcal{JS}(M(x_i), T_d(x_i))$
$AIN = \frac{r_t (M_u, M_{orig}, \alpha)}{r_t (M_s, M_{orig}, \alpha)}$
$
\mbox{efficacy}(w;D) = \begin{cases}
\frac{1}{i(w; D)}, \mbox{if i(w;D) > 0} \
\infty, \mbox{otherwise}
\end{cases}
$
$
f(n) =
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}
$
($\mathcal{ZFR} = 0$)
$\mathcal{JS}(M(x), T_d(x)) = 0.5*\mathcal{KL}(M(x)||m)+ 0.5*\mathcal{KL}(T_d(x)||m)$
if $\mbox{i(w;D) > 0}$, then $\mbox{efficacy}(w;D) = \frac{1}{i(w; D)}$;
otherwise $\mbox{efficacy}(w;D) = \infty$