Pinned Repositories
-Understanding-and-Predicting-Property-Maintenance-Fines
This assignment is based on a data challenge from the Michigan Data Science Team (MDST). The Michigan Data Science Team (MDST) and the Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS) have partnered with the City of Detroit to help solve one of the most pressing problems facing Detroit - blight. Blight violations are issued by the city to individuals who allow their properties to remain in a deteriorated condition. Every year, the city of Detroit issues millions of dollars in fines to residents and every year, many of these fines remain unpaid. Enforcing unpaid blight fines is a costly and tedious process, so the city wants to know: how can we increase blight ticket compliance? The first step in answering this question is understanding when and why a resident might fail to comply with a blight ticket. This is where predictive modeling comes in. For this assignment, your task is to predict whether a given blight ticket will be paid on time. All data for this assignment has been provided to us through the Detroit Open Data Portal. Only the data already included in your Coursera directory can be used for training the model for this assignment. Nonetheless, we encourage you to look into data from other Detroit datasets to help inform feature creation and model selection. We recommend taking a look at the following related datasets: Building Permits Trades Permits Improve Detroit: Submitted Issues DPD: Citizen Complaints Parcel Map We provide you with two data files for use in training and validating your models: train.csv and test.csv. Each row in these two files corresponds to a single blight ticket, and includes information about when, why, and to whom each ticket was issued. The target variable is compliance, which is True if the ticket was paid early, on time, or within one month of the hearing data, False if the ticket was paid after the hearing date or not at all, and Null if the violator was found not responsible. Compliance, as well as a handful of other variables that will not be available at test-time, are only included in train.csv. Note: All tickets where the violators were found not responsible are not considered during evaluation. They are included in the training set as an additional source of data for visualization, and to enable unsupervised and semi-supervised approaches. However, they are not included in the test set. File descriptions (Use only this data for training your model!) readonly/train.csv - the training set (all tickets issued 2004-2011) readonly/test.csv - the test set (all tickets issued 2012-2016) readonly/addresses.csv & readonly/latlons.csv - mapping from ticket id to addresses, and from addresses to lat/lon coordinates. Note: misspelled addresses may be incorrectly geolocated. Data fields train.csv & test.csv ticket_id - unique identifier for tickets agency_name - Agency that issued the ticket inspector_name - Name of inspector that issued the ticket violator_name - Name of the person/organization that the ticket was issued to violation_street_number, violation_street_name, violation_zip_code - Address where the violation occurred mailing_address_str_number, mailing_address_str_name, city, state, zip_code, non_us_str_code, country - Mailing address of the violator ticket_issued_date - Date and time the ticket was issued hearing_date - Date and time the violator's hearing was scheduled violation_code, violation_description - Type of violation disposition - Judgment and judgement type fine_amount - Violation fine amount, excluding fees admin_fee - $20 fee assigned to responsible judgments state_fee - $10 fee assigned to responsible judgments late_fee - 10% fee assigned to responsible judgments discount_amount - discount applied, if any clean_up_cost - DPW clean-up or graffiti removal cost judgment_amount - Sum of all fines and fees grafitti_status - Flag for graffiti violations train.csv only payment_amount - Amount paid, if any payment_date - Date payment was made, if it was received payment_status - Current payment status as of Feb 1 2017 balance_due - Fines and fees still owed collection_status - Flag for payments in collections compliance [target variable for prediction] Null = Not responsible 0 = Responsible, non-compliant 1 = Responsible, compliant compliance_detail - More information on why each ticket was marked compliant or non-compliant
0rr
adi112100
Awesome-Javascript-and-React-Project
django_digitrecognizer
ANN model to predict digit using django as backend
django_predictdiabetes
House-Prices_kaggle
my_website_django
PathFinder_Frontend
smart-attendance-app
adi112100's Repositories
adi112100/-Understanding-and-Predicting-Property-Maintenance-Fines
This assignment is based on a data challenge from the Michigan Data Science Team (MDST). The Michigan Data Science Team (MDST) and the Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS) have partnered with the City of Detroit to help solve one of the most pressing problems facing Detroit - blight. Blight violations are issued by the city to individuals who allow their properties to remain in a deteriorated condition. Every year, the city of Detroit issues millions of dollars in fines to residents and every year, many of these fines remain unpaid. Enforcing unpaid blight fines is a costly and tedious process, so the city wants to know: how can we increase blight ticket compliance? The first step in answering this question is understanding when and why a resident might fail to comply with a blight ticket. This is where predictive modeling comes in. For this assignment, your task is to predict whether a given blight ticket will be paid on time. All data for this assignment has been provided to us through the Detroit Open Data Portal. Only the data already included in your Coursera directory can be used for training the model for this assignment. Nonetheless, we encourage you to look into data from other Detroit datasets to help inform feature creation and model selection. We recommend taking a look at the following related datasets: Building Permits Trades Permits Improve Detroit: Submitted Issues DPD: Citizen Complaints Parcel Map We provide you with two data files for use in training and validating your models: train.csv and test.csv. Each row in these two files corresponds to a single blight ticket, and includes information about when, why, and to whom each ticket was issued. The target variable is compliance, which is True if the ticket was paid early, on time, or within one month of the hearing data, False if the ticket was paid after the hearing date or not at all, and Null if the violator was found not responsible. Compliance, as well as a handful of other variables that will not be available at test-time, are only included in train.csv. Note: All tickets where the violators were found not responsible are not considered during evaluation. They are included in the training set as an additional source of data for visualization, and to enable unsupervised and semi-supervised approaches. However, they are not included in the test set. File descriptions (Use only this data for training your model!) readonly/train.csv - the training set (all tickets issued 2004-2011) readonly/test.csv - the test set (all tickets issued 2012-2016) readonly/addresses.csv & readonly/latlons.csv - mapping from ticket id to addresses, and from addresses to lat/lon coordinates. Note: misspelled addresses may be incorrectly geolocated. Data fields train.csv & test.csv ticket_id - unique identifier for tickets agency_name - Agency that issued the ticket inspector_name - Name of inspector that issued the ticket violator_name - Name of the person/organization that the ticket was issued to violation_street_number, violation_street_name, violation_zip_code - Address where the violation occurred mailing_address_str_number, mailing_address_str_name, city, state, zip_code, non_us_str_code, country - Mailing address of the violator ticket_issued_date - Date and time the ticket was issued hearing_date - Date and time the violator's hearing was scheduled violation_code, violation_description - Type of violation disposition - Judgment and judgement type fine_amount - Violation fine amount, excluding fees admin_fee - $20 fee assigned to responsible judgments state_fee - $10 fee assigned to responsible judgments late_fee - 10% fee assigned to responsible judgments discount_amount - discount applied, if any clean_up_cost - DPW clean-up or graffiti removal cost judgment_amount - Sum of all fines and fees grafitti_status - Flag for graffiti violations train.csv only payment_amount - Amount paid, if any payment_date - Date payment was made, if it was received payment_status - Current payment status as of Feb 1 2017 balance_due - Fines and fees still owed collection_status - Flag for payments in collections compliance [target variable for prediction] Null = Not responsible 0 = Responsible, non-compliant 1 = Responsible, compliant compliance_detail - More information on why each ticket was marked compliant or non-compliant
adi112100/django_predictdiabetes
adi112100/my_website_django
adi112100/PathFinder_Frontend
adi112100/0rr
adi112100/adi112100
adi112100/Awesome-Javascript-and-React-Project
adi112100/django_digitrecognizer
ANN model to predict digit using django as backend
adi112100/House-Prices_kaggle
adi112100/smart-attendance-app
adi112100/Best-README-Template
An awesome README template to jumpstart your projects!
adi112100/BussinessPortfolio_with_Nextjs
adi112100/Coding_Club_Website
integrating restapi with reactjs
adi112100/django_rest_framework
adi112100/FirstWeb
adi112100/hacktober2021
adi112100/Hacktoberfest-2020
Make this Hacktoberfest a learning period and contribute to Great Open Source Projects.
adi112100/HacktoberFest2020
Make your first PR! ~ A beginner-friendly repository. Add your profile, a blog, or any program under any language (it can be anything from a hello-world program to a complex data structure algorithm) or update the existing one. Just make sure to add the file under the correct directory. Happy hacking!
adi112100/HacktoberFest2021
adi112100/Javascript-Practice-programs
Beginners friendly Programs for a better understanding of concepts
adi112100/newsapp
adi112100/PathFindier_backend
adi112100/pythonrestapi
adi112100/React
adi112100/react-native-styling-cheat-sheet
Most of the React Native styling material in one page
adi112100/react-share-demo
adi112100/Tejas1510
adi112100/Titanic_ml_model
Well known ml problem here based on data set we have to predict given traveler survived in titanic tragedy
adi112100/unity-project-hackathon
adi112100/VedantKhairnar