=============
Mamdani and Sugeno type Fuzzy Inference System in julia. This code is based in Lepisma.
pkg> add Fuzzy
julia> using Fuzzy
- Create input, output membership functions and rules
julia> input_a = Dict("small" => TriangularMF(1, 2, 3), "large" => TriangularMF(4, 5, 6))
julia> input_b = Dict("small" => TriangularMF(1, 2, 3))
julia> inputs = [input_a, input_b]
julia> output = Dict("small" => TriangularMF(1, 2, 3))
julia> rule = Rule(["large", "small"], "small")
julia> rules = [rule]
- Create FIS
julia> fis = FISMamdani(inputs, output, rules)
- Find output
julia> in_vals = [4.7, 2.3]
julia> eval_fis(fis, in_vals)
- Create input membership functions and rules with consequence coefficients
julia> input_a = Dict("small" => TriangularMF(1, 2, 3), "large" => TriangularMF(5, 6, 7))
julia> input_b = Dict("small" => TriangularMF(1, 2, 3))
julia> inputs = [input_a, input_b]
julia> rule1 = Rule(["large", "small"], [1.0, 1.0, 1.0])
julia> rule2 = Rule(["small", "small"], [0.0, 0.0, 5.0])
julia> rules = [rule]
- Create FIS
julia> fis = FISSugeno(inputs, rules)
- Find output
julia> in_vals = [2.3, 1.2]
julia> eval_fis(fis, in_vals)
-
FIS
- Mamdani
- Sugeno
-
Membership functions
- Triangular
- Gaussian
- Bell
- Trapezoidal
- Sigmoid
-
Defuzzification
- Mean of Maximum
- Weighted Average (default)
- Centroid (coming soon)
-
T-Norm
- Minimum (MIN)
- Algebraic product (A-PROD)
- Bounded difference (B-DIF)
- Drastic product (D-PROD)
- Einstein product (E-PROD)
- Hamacher product (H-PROD)
-
S-Norm
- Maximum (MAX)
- Algebraic sum (A-SUM)
- Bounded sum (B-SUM)
- Drastic sum (D-SUM)
- Einstein sum (E-SUM)
- Hamacher sum (H-SUM)
MIT