Efficient SOC Toolbox / SOC快速评测工具(中文Readme)
🔥🔥🔥 100 methods SOC saliency maps can be found on Here!
Noted that, in our ICON (arXiv, 2021), we use the following setting:
- Using both train and val set of SOC to train our model.
- Dropping out images without salient objects for training and testing.
Thus, our Training and Testing set are 2400 and 600, respectively.
For a quick employment, you can download the updated SOC on Baidu | Key: iqul .
If you download SOC on above link, you can ignore procedures below.
(A) You can generates train.txt list which drops images without salient objects by
python ./Train/SOC/drop_blank_and_generate_list.py
(B) You can segment 8 attributes of testing set and their test.txt by
python ./Test/SOC/attr_categoty_and_generate_list.py
Then 9 file folders will be generated, which are ./datasets/SOC/Test/SOC-AC
, ./datasets/SOC/Test/SOC-BO
, ./datasets/SOC/Test/SOC-CL
, ./datasets/SOC/Test/SOC-HO
, ./datasets/SOC/Test/SOC-MB
, ./datasets/SOC/Test/SOC-OC
, ./datasets/SOC/Test/SOC-OV
, ./datasets/SOC/Test/SOC-SC
, ./datasets/SOC/Test/SOC-SO
. They contain the images and GTs of each category.
Actually, we have already processed A and B if you download SOC from above link. (If needing, the original SOC dataset can be found here and you can do A and B yourself.)
When your training process has done, you should generate the predictions of SOC-AC
, SOC-BO
, SOC-CL
, SOC-HO
, SOC-MB
, SOC-OC
, SOC-OV
, SOC-SC
and SOC-SO
, respectively.
When you have already generated all SOC-Test, an alternative method is to add Attributes
files to prediction file, such as Prediction/**Your_Method**/SOC/Attributes
then slightly modify the path in Prediction/*Your_Method**/SOC/attr_categoty_and_generate_list.py
to automatively split your predicted saliency maps to 9 attributes.
After that, you can evaluate your performance on SOC in ~2 minutes.
sh run_eval.sh
The saliency maps of ICON can be found in Baidu | Key:bopg.
Tranined on DUTS, evaluated on SOC-Attr(9 attributes, 600 pics)
Method:ICON,Dataset:SOC,Attribute:SOC-AC||Smeasure:0.832; wFmeasure:0.767; MAE:0.066; adpEm:0.872; meanEm:0.885; maxEm:0.895; adpFm:0.782; meanFm:0.793; maxFm:0.814
Method:ICON,Dataset:SOC,Attribute:SOC-BO||Smeasure:0.75; wFmeasure:0.841; MAE:0.166; adpEm:0.664; meanEm:0.784; maxEm:0.838; adpFm:0.833; meanFm:0.892; maxFm:0.914
Method:ICON,Dataset:SOC,Attribute:SOC-CL||Smeasure:0.792; wFmeasure:0.733; MAE:0.113; adpEm:0.821; meanEm:0.828; maxEm:0.833; adpFm:0.762; meanFm:0.767; maxFm:0.777
Method:ICON,Dataset:SOC,Attribute:SOC-HO||Smeasure:0.826; wFmeasure:0.763; MAE:0.091; adpEm:0.851; meanEm:0.854; maxEm:0.866; adpFm:0.788; meanFm:0.792; maxFm:0.815
Method:ICON,Dataset:SOC,Attribute:SOC-MB||Smeasure:0.783; wFmeasure:0.697; MAE:0.095; adpEm:0.813; meanEm:0.821; maxEm:0.834; adpFm:0.729; meanFm:0.738; maxFm:0.76
Method:ICON,Dataset:SOC,Attribute:SOC-OC||Smeasure:0.784; wFmeasure:0.704; MAE:0.103; adpEm:0.816; meanEm:0.821; maxEm:0.836; adpFm:0.739; meanFm:0.743; maxFm:0.765
Method:ICON,Dataset:SOC,Attribute:SOC-OV||Smeasure:0.784; wFmeasure:0.75; MAE:0.117; adpEm:0.824; meanEm:0.833; maxEm:0.84; adpFm:0.789; meanFm:0.792; maxFm:0.806
Method:ICON,Dataset:SOC,Attribute:SOC-SC||Smeasure:0.81; wFmeasure:0.721; MAE:0.079; adpEm:0.852; meanEm:0.856; maxEm:0.873; adpFm:0.728; meanFm:0.746; maxFm:0.782
Method:ICON,Dataset:SOC,Attribute:SOC-SO||Smeasure:0.769; wFmeasure:0.643; MAE:0.087; adpEm:0.803; meanEm:0.809; maxEm:0.828; adpFm:0.662; meanFm:0.677; maxFm:0.71
Tranined on DUTS, evaluated on SOC-Test(1200 pics),又名S0C-1200。
Method:ICON,Dataset:SOC,Attribute:SOC-1200||Smeasure:0.811; wFmeasure:0.347; MAE:0.128; adpEm:0.812; meanEm:0.828; maxEm:0.896; adpFm:0.359; meanFm:0.363; maxFm:0.378
Trained on SOC-Sal-Train_and_Val(2400 pics), evaluated on SOC-Attr(9 attributes, 600 pics).
Method:ICON,Dataset:SOC,Attribute:SOC-AC||Smeasure:0.84; wFmeasure:0.778; MAE:0.062; adpEm:0.89; meanEm:0.885; maxEm:0.894; adpFm:0.803; meanFm:0.806; maxFm:0.822
Method:ICON,Dataset:SOC,Attribute:SOC-BO||Smeasure:0.7; wFmeasure:0.762; MAE:0.216; adpEm:0.599; meanEm:0.725; maxEm:0.787; adpFm:0.739; meanFm:0.811; maxFm:0.862
Method:ICON,Dataset:SOC,Attribute:SOC-CL||Smeasure:0.845; wFmeasure:0.803; MAE:0.08; adpEm:0.874; meanEm:0.883; maxEm:0.893; adpFm:0.835; meanFm:0.834; maxFm:0.847
Method:ICON,Dataset:SOC,Attribute:SOC-HO||Smeasure:0.841; wFmeasure:0.785; MAE:0.078; adpEm:0.873; meanEm:0.88; maxEm:0.892; adpFm:0.81; meanFm:0.815; maxFm:0.834
Method:ICON,Dataset:SOC,Attribute:SOC-MB||Smeasure:0.82; wFmeasure:0.746; MAE:0.072; adpEm:0.846; meanEm:0.862; maxEm:0.87; adpFm:0.772; meanFm:0.781; maxFm:0.794
Method:ICON,Dataset:SOC,Attribute:SOC-OC||Smeasure:0.813; wFmeasure:0.742; MAE:0.086; adpEm:0.847; meanEm:0.859; maxEm:0.873; adpFm:0.775; meanFm:0.78; maxFm:0.8
Method:ICON,Dataset:SOC,Attribute:SOC-OV||Smeasure:0.826; wFmeasure:0.801; MAE:0.089; adpEm:0.86; meanEm:0.872; maxEm:0.88; adpFm:0.833; meanFm:0.833; maxFm:0.844
Method:ICON,Dataset:SOC,Attribute:SOC-SC||Smeasure:0.834; wFmeasure:0.753; MAE:0.059; adpEm:0.895; meanEm:0.893; maxEm:0.906; adpFm:0.773; meanFm:0.779; maxFm:0.8
Method:ICON,Dataset:SOC,Attribute:SOC-SO||Smeasure:0.816; wFmeasure:0.714; MAE:0.061; adpEm:0.869; meanEm:0.873; maxEm:0.884; adpFm:0.734; meanFm:0.745; maxFm:0.766
Trained on SOC-Sal-Train(1800 pics), evaluated on SOC-Attr(9 attributes, 600 pics).
Method:ICON,Dataset:SOC,Attribute:SOC-AC||Smeasure:0.834; wFmeasure:0.774; MAE:0.067; adpEm:0.868; meanEm:0.891; maxEm:0.905; adpFm:0.781; meanFm:0.807; maxFm:0.827
Method:ICON,Dataset:SOC,Attribute:SOC-BO||Smeasure:0.718; wFmeasure:0.78; MAE:0.203; adpEm:0.421; meanEm:0.746; maxEm:0.781; adpFm:0.58; meanFm:0.825; maxFm:0.847
Method:ICON,Dataset:SOC,Attribute:SOC-CL||Smeasure:0.828; wFmeasure:0.774; MAE:0.092; adpEm:0.822; meanEm:0.868; maxEm:0.879; adpFm:0.778; meanFm:0.809; maxFm:0.827
Method:ICON,Dataset:SOC,Attribute:SOC-HO||Smeasure:0.834; wFmeasure:0.769; MAE:0.085; adpEm:0.857; meanEm:0.868; maxEm:0.882; adpFm:0.793; meanFm:0.802; maxFm:0.822
Method:ICON,Dataset:SOC,Attribute:SOC-MB||Smeasure:0.815; wFmeasure:0.746; MAE:0.079; adpEm:0.813; meanEm:0.853; maxEm:0.865; adpFm:0.754; meanFm:0.784; maxFm:0.808
Method:ICON,Dataset:SOC,Attribute:SOC-OC||Smeasure:0.786; wFmeasure:0.7; MAE:0.097; adpEm:0.816; meanEm:0.84; maxEm:0.856; adpFm:0.73; meanFm:0.743; maxFm:0.765
Method:ICON,Dataset:SOC,Attribute:SOC-OV||Smeasure:0.807; wFmeasure:0.769; MAE:0.103; adpEm:0.802; meanEm:0.851; maxEm:0.862; adpFm:0.779; meanFm:0.808; maxFm:0.822
Method:ICON,Dataset:SOC,Attribute:SOC-SC||Smeasure:0.819; wFmeasure:0.73; MAE:0.068; adpEm:0.867; meanEm:0.884; maxEm:0.903; adpFm:0.736; meanFm:0.759; maxFm:0.797
Method:ICON,Dataset:SOC,Attribute:SOC-SO||Smeasure:0.796; wFmeasure:0.675; MAE:0.071; adpEm:0.829; meanEm:0.848; maxEm:0.869; adpFm:0.69; meanFm:0.712; maxFm:0.745
Others 20 SOD methods on SOC dataset can be found on baidu yun (code: z3fq): DSS、NLDF、SRM、Amulet、DGRL、BMPM、PiCANet-R、R3Net、C2S-Net、RANet、CPD、AFN、BASNet、PoolNet、SCRN、SIBA、EGNet、F3Net、GCPANet、MINet.
If you want to re-evaluate these methods by using SOCToolbox, please add Attributes
files to prediction file, such as Prediction/MINet/SOC/Attributes
and slightly modify the path in Prediction/MINet/SOC/attr_categoty_and_generate_list.py
to automatively split 8 attributes.
Comparison:
Some codes borrowed from:
SOC results of other methods:
@inproceedings{fan2018salient,
title={Salient objects in clutter: Bringing salient object detection to the foreground},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Jiang-Jiang and Gao, Shang-Hua and Hou, Qibin and Borji, Ali},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={186--202},
year={2018}
}
@inproceedings{Smeasure,
title={Structure-measure: A new way to evaluate foreground maps},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
booktitle=ICCV,
pages={4548--4557},
year={2017}
}
@inproceedings{Emeasure,
title="Enhanced-alignment Measure for Binary Foreground Map Evaluation",
author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}",
booktitle=IJCAI,
pages="698--704",
year={2018}
}
@inproceedings{margolin2014evaluate,
title={How to evaluate foreground maps?},
author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2014}
}
@article{zhuge2021salient,
title={Salient Object Detection via Integrity Learning},
author={Zhuge, Mingchen and Fan, Deng-Ping and Liu, Nian and Zhang, Dingwen and Xu, Dong and Shao, Ling},
journal={arXiv preprint arXiv:2101.07663},
year={2021}
}