/nem-writer

Write meter readings to AEMO NEM12 (interval metering data) and NEM13 (accumulated metering data) data files

Primary LanguagePythonMIT LicenseMIT

nem-writer

PyPI version Build Status Coverage Status

Write meter readings to AEMO NEM12 (interval metering data) and NEM13 (accumulated metering data) data files

Accumulated Data (NEM13)

from datetime import datetime
from nemwriter import NEM13

m = NEM13(to_participant='123')
ch = m.add_reading(nmi='123',
                    nmi_configuration='E1B1B2',
                    register_id='1',
                    nmi_suffix='E1',
                    previous_read=412,
                    previous_read_date=datetime(2017,1,1),
                    previous_quality_method='A',
                    current_read=512,
                    current_read_date=datetime(2017,2,1),
                    current_quality_method='A',
                    quantity=100,
                    uom='kWh'
                    )
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM13,201701010101,,123
250,123,E1B1B2,1,E1,,,E,412,201701010000,A,,,512,201702010000,A,,,100,kWh,,,
900

Interval Data (NEM12)

from datetime import datetime
from nemwriter import NEM12

m = NEM12(to_participant='123')
readings = [
    # read end, read value, quality method, event code, event desc
    [datetime(2004, 4, 18, 0, 30), 10.1, 'A', 79, 'Power Outage Alarm'],
    [datetime(2004, 4, 18, 1, 0), 11.2, 'A'],
    [datetime(2004, 4, 18, 1, 30), 12.3, 'A'],
    [datetime(2004, 4, 18, 2, 0), 13.4, 'A'],
]

ch = m.add_readings(nmi='123',
                    nmi_configuration='E1B1B2',
                    nmi_suffix='E1', uom='kWh',
                    readings=readings)
output = m.output_csv(file_path='output.csv')

Will output:

100,NEM12,201701010101,,123
200,123,E1B1B2,,E1,,,kWh,30,
300,20040418,10.1,11.2,12.3,13.4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,V,,,,
400,1,1,A,79,Power Outage Alarm
400,2,48,A,,
900

Alternatively, save as a compressed csv in a zip file.

output = m.output_zip(file_path='output.zip')

From Pandas DataFrame

If you create a pandas DataFrame, for example:

num_intervals = 288
index = [datetime(2004, 4, 1) + timedelta(minutes=5*x) for x in range(1,num_intervals+1)]
e1 = [randrange(1,10) for x in range(1,num_intervals+1)]
e2 = [randrange(1,5) for x in range(1,num_intervals+1)]
s1 = pd.Series(data=e1, index=index, name="E1")
s2 = pd.Series(data=e2, index=index, name="E2")
df=pd.concat([s1,s2],axis=1)
print(df)
                     E1  E2
2004-04-01 00:05:00   2   3
2004-04-01 00:10:00   8   3
2004-04-01 00:15:00   7   2
2004-04-01 00:20:00   4   3
2004-04-01 00:25:00   3   4
...                  ..  ..
2004-04-01 23:40:00   9   2
2004-04-01 23:45:00   1   1
2004-04-01 23:50:00   6   2
2004-04-01 23:55:00   7   1
2004-04-01 00:00:00   4   2

You can easily output the dataframe to a NEM12 file:

m = NEM12(to_participant='123')
m.add_dataframe(nmi='123', interval=5, df=df, uoms={'E1': 'kWh', 'E2': 'kWh'})
output = m.output_csv(file_path='output.csv')

If your DataFrame has a Quality and EventDesc column, they will also be handled appropriately.