PyTorch implementation. More details can be seen in the medium article here (mandarin version): https://medium.com/ai-academy-taiwan/sampling-by-gan-a-simple-case-study-6d0a8483592b
- Environment used:
- torch 1.1.0
- numpy 1.17.3
- python 3.7.3
-
Generator
- hidden layer: Fully-connected (32 nodes), ReLU activation
- output layer: Fully-connected (1 node), no activation
-
Discriminator
- hidden layer: Fully-connected (32 nodes), ReLU activation
- output layer: Fully-connected (1 node), Sigmoid activation
- minibatch feature
- WGAN implementation
- WGAN-GP implementation
- https://github.com/togheppi/vanilla_GAN
- https://github.com/ericjang/genadv_tutorial/blob/master/genadv1.ipynb
- https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/
- https://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
- https://github.com/kremerj/gan
- https://github.com/igul222/improved_wgan_training
- https://github.com/AYLIEN/gan-intro/blob/master/gan.py