KDD-Cup-Multimodalities-Recall

KDD-Cup-Multimodalities-Recall 第10名来自垫底小分队的方案。ndcg@5指标:A榜单模model1得分0.6969,双模集成得分0.7158;B榜双模集成得分0.7276。

git链接:https://github.com/IntoxicatedDING/KDD-Cup-Multimodalities-Recall.git,阿里云code链接(包含部分必要预处理数据):https://code.aliyun.com/zjhndyhnba/KDD-Cup-Multimodalities-Recall-FINAL.git

方案

预训练(multilabel):

  • 对每个query文本进行分词,并去除停用词,每个词作为一个标签。
  • 以图片作为输入,进行多标签分类。
  • 以图片作为输入,进行查询文本生成(image caption)。
  • 其中多标签分类和查询文本生成共同进行训练。

基于单词(标签)与图片的匹配模型(model1):

  • 使用预训练的图片embedding(多标签分类任务得到)和查询文本中的每个单词计算匹配分,对图片的encoder进行fine tuning。
  • 对每个单词生成一个权重。
  • 使用上述权重对单词匹配分加权平均得到最终得分。
  • 训练方式为pairwise。

基于句子与图片的匹配模型(model2

  • 使用预训练的图片embedding(查询文本生成任务得到)和整个查询文本计算匹配分,对图片的encoder进行fine tuning。
  • 训练方式为pointwise。

集成(ensemble.ipynb

  • 对上述两个模型的得分进行加权平均作为最终得分。
  • 权重通过在验证集上进行搜索得到。

目录结构

|-- data
	|-- multimodal_labels.txt
	|-- train
		|-- train.tsv
	|-- valid
		|-- valid.tsv
		|-- valid_answer.json
	|-- testA
		|-- testA.tsv
	|-- testB
		|-- testB.tsv
	|-- info
	    	|-- data.pkl(剥除base64数据)
	    	|-- data_info2.pkl(聚类、字典等信息)
	    	|-- query2product2.pkl(查询文本到物品的映射)
	    
|-- user_data
    	|-- image_encoder_large.pth(图片编码器预训练模型,未上传)

|-- external_resources
    	|--test_pred_model1.json
    	|--valid_pred_model1.json
    	|--test_pred_model2.json
    	|--valid_pred_model2.json
    	|--submission.csv
	 

流程

  1. 数据准备工作:
tar -zxvf info.tar.gz -C ./data
python preprocess.py
  1. 进入multilabel目录使用train.py脚本进行训练,完成后使用export_model.pyImageEncoder预训练模型导出:
cd multilabel
python train.py
python export_model.py --epoch 6
  1. 进入model1目录使用train.py脚本进行训练,完成后使用validation.py输出测试数据集的预测:
cd model1
python -u -m torch.distributed.launch --nproc_per_node=2 train.py --devices 0 1
python validation.py --epoch 5
  1. 进入model2目录使用train.py脚本进行训练,完成后使用validation.py输出测试数据集的预测:
cd model2
python -u -m torch.distributed.launch --nproc_per_node=2 train.py --devices 0 1
python validation.py --epoch 2
  1. 集成:
python ensemble.py

测试

修改相关文件的路径,执行如下命令:

tar -zxvf info.tar.gz -C ./data
cd model1
tar -zxvf ckpt.tar.gz
python validation.py
cd ../model2
tar -zxvf ckpt.tar.gz
python validation.py
cd ..
python ensemble.py

环境

  • torch==1.3.1
  • prefetch-generator==1.0.1
  • transformers==2.8.0
  • numpy==1.17.2