/atp-world-tour-tennis-data

Using Python to scrape ATP World Tour tennis data

Primary LanguagePython

ATP World Tour tennis data

This repository contains Python scripts that scrape tennis data from the ATP World Tour website, as of October 2017. Note that if the site layout is subsequently redesigned, then these scripts will no longer work.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contents

A. Scraping tournament data by year

A1. The tournaments.py script ^

The following Python script:

scrapes the following data:

tourney_year_id
tourney_order
tourney_type
tourney_name
tourney_id
tourney_slug
tourney_location
tourney_date
year
tourney_month
tourney_day
tourney_singles_draw
tourney_doubles_draw
tourney_conditions
tourney_surface
tourney_fin_commit_raw
currency
tourney_fin_commit
tourney_url_suffix
singles_winner_name
singles_winner_url
singles_winner_player_slug
singles_winner_player_id
doubles_winner_1_name
doubles_winner_1_url
doubles_winner_1_player_slug
doubles_winner_1_player_id
doubles_winner_2_name
doubles_winner_2_url
doubles_winner_2_player_slug
doubles_winner_2_player_id

from pages like the following:

image

The CSV file for all tournament data from 1877-2016 is found in:

A2. Example usage ^

Example command line usage and output is as follows:

$ time python3 tournaments.py 2010 2019

Year    Tournaments
----    -----------
2010    66
2011    66
2012    67
2013    65
2014    65
2015    66
2016    67
2017    69
2018    69
2019    68

real	0m14.230s
user	0m7.306s
sys	0m0.104s

B. Scraping match scores for each tournament

B1. The match_scores.py script ^

The following Python script:

scrapes the following data:

tourney_year_id
tourney_order
tourney_name
tourney_slug
tourney_url_suffix
start_date
start_year
start_month
start_day
end_date
end_year
end_month
end_day
currency
prize_money
match_index
tourney_round_name
round_order
match_order
winner_name
winner_player_id
winner_slug
loser_name
loser_player_id
loser_slug
winner_seed
loser_seed
match_score_tiebreaks
winner_sets_won
loser_sets_won
winner_games_won
loser_games_won
winner_tiebreaks_won
loser_tiebreaks_won
match_id
match_stats_url_suffix

from pages like the following:

image

The CSV files for all match scores data from 1877-2016 is found in:

B2. Example usage ^

Example command line usage and output is as follows:

$ time python3 match_scores.py 1967 1968

Scraping match info for 4 tournaments...
Year    Order    Tournament                                Matches
----    -----    ----------                                -------
1967    1        australian-championships                  58
1967    2        french-championships                      123
1967    3        wimbledon                                 127
1967    4        us-championships                          127

Scraping match info for 15 tournaments...
Year    Order    Tournament                                Matches
----    -----    ----------                                -------
1968    1        australian-chps                           61
1968    2        bournemouth                               31
1968    3        rome                                      103
1968    4        roland-garros                             126
1968    5        barcelona                                 57
1968    6        london                                    53
1968    7        wimbledon                                 127
1968    8        cincinnati                                11
1968    9        dublin                                    31
1968    10       gstaad                                    31
1968    11       hamburg                                   47
1968    12       toronto                                   0
1968    13       us-open                                   95
1968    14       los-angeles                               68
1968    15       buenos-aires                              36

real    0m21.037s
user    0m8.330s
sys     0m0.211s

C. Scraping match stats for each match

C1. The match_stats.py script ^

The following Python script:

scrapes the following data:

match_id
tourney_slug
match_stats_url_suffix
match_time
match_duration
winner_slug
winner_serve_rating
winner_aces
winner_double_faults
winner_first_serves_in
winner_first_serves_total
winner_first_serve_points_won
winner_first_serve_points_total
winner_second_serve_points_won
winner_second_serve_points_total
winner_break_points_saved
winner_break_points_serve_total
winner_service_games_played
winner_return_rating
winner_first_serve_return_won
winner_first_serve_return_total
winner_second_serve_return_won
winner_second_serve_return_total
winner_break_points_converted
winner_break_points_return_total
winner_return_games_played
winner_service_points_won
winner_service_points_total
winner_return_points_won
winner_return_points_total
winner_total_points_won
winner_total_points_total
loser_slug
loser_serve_rating
loser_aces
loser_double_faults
loser_first_serves_in
loser_first_serves_total
loser_first_serve_points_won
loser_first_serve_points_total
loser_second_serve_points_won
loser_second_serve_points_total
loser_break_points_saved
loser_break_points_serve_total
loser_service_games_played
loser_return_rating
loser_first_serve_return_won
loser_first_serve_return_total
loser_second_serve_return_won
loser_second_serve_return_total
loser_break_points_converted
loser_break_points_return_total
loser_return_games_played
loser_service_points_won
loser_service_points_total
loser_return_points_won
loser_return_points_total
loser_total_points_won
loser_total_points_total

from pages like the following:

image

The CSV files for all match stats data from 1991-2016 is found in:

[Note: the ATP did not start keeping match stats data until 1991.]

C2. Example usage ^

Example command line usage and output is as follows:

$ time python3 match_stats.py 1991

Collecting match stats data for 83 tournaments:

Index    Tourney slug           Matches
-----    ------------           -------
0        adelaide               30/30 (100%)
1        wellington             30/30 (100%)
2        sydney                 31/31 (100%)
3        auckland               29/29 (100%)
4        australian-open        127/127 (100%)
5        milan                  29/31 (94%)
6        san-francisco          30/31 (97%)
7        guaruja                30/31 (97%)
8        philadelphia           47/47 (100%)
9        brussels               31/31 (100%)
10       stuttgart              31/31 (100%)
11       memphis                47/47 (100%)
12       rotterdam              31/31 (100%)
13       chicago                30/30 (100%)
14       indian-wells           54/54 (100%)
15       copenhagen             31/31 (100%)
16       miami                  95/95 (100%)
17       estoril                31/31 (100%)
18       hong-kong              31/31 (100%)
19       orlando                31/31 (100%)
20       tokyo                  53/54 (98%)
21       barcelona              54/54 (100%)
22       nice                   31/31 (100%)
23       seoul                  31/31 (100%)
24       monte-carlo            54/54 (100%)
25       singapore              31/31 (100%)
26       madrid                 31/31 (100%)
27       munich                 31/31 (100%)
28       tampa                  29/30 (97%)
29       hamburg                55/55 (100%)
30       charlotte              1/30 (3%)
31       rome                   59/59 (100%)
32       umag                   29/31 (94%)
33       dusseldorf             Match structure/stats URL problem
34       bologna                30/30 (100%)
35       roland-garros          47/47 (100%)
36       london                 53/53 (100%)
37       florence               30/31 (97%)
38       rosmalen               31/31 (100%)
39       genova                 31/31 (100%)
40       manchester             31/31 (100%)
41       wimbledon              121/121 (100%)
42       gstaad                 30/30 (100%)
43       bastad                 31/31 (100%)
44       newport                29/31 (94%)
45       stuttgart              47/47 (100%)
46       washington             55/55 (100%)
47       montreal               55/55 (100%)
48       hilversum              30/30 (100%)
49       kitzbuhel              47/47 (100%)
50       los-angeles            31/31 (100%)
51       san-marino             29/30 (97%)
52       cincinnati             55/55 (100%)
53       prague                 30/31 (97%)
54       indianapolis           55/55 (100%)
55       new-haven              54/54 (100%)
56       long-island            31/31 (100%)
57       schenectady            30/31 (97%)
58       us-open                125/125 (100%)
59       bordeaux               31/31 (100%)
60       brasilia               46/47 (98%)
61       geneva                 31/31 (100%)
62       basel                  31/31 (100%)
63       palermo                31/31 (100%)
64       brisbane               30/31 (97%)
65       sydney                 47/47 (100%)
66       toulouse               31/31 (100%)
67       athens                 30/31 (97%)
68       tokyo                  45/47 (96%)
69       berlin                 31/31 (100%)
70       tel-aviv               30/31 (97%)
71       lyon                   31/31 (100%)
72       vienna                 31/31 (100%)
73       stockholm              47/47 (100%)
74       guaruja                31/31 (100%)
75       paris                  46/46 (100%)
76       buzios                 31/31 (100%)
77       birmingham             31/31 (100%)
78       moscow                 30/30 (100%)
79       sao-paulo              29/29 (100%)
80       atp-tour-world-championship    1/1 (100%)
81       atp-tour-world-doubles-championship    Match structure/stats URL problem
82       munich                 Match structure/stats URL problem

real	36m11.241s
user	2m13.432s
sys     0m4.073s