ajayn1997/Neural-Architecture-Search-using-Reinforcement-Learning
An implementation of neural architecture search using the REINFORCE algorithm. we use a re-current network to generate the model descriptions of neural networks and trainthis RNN with reinforcement learning to maximize the expected accuracy of thegenerated architectures on a validation set. This algorithm is tested on the CIFAR-10 dataset. The project is inspired from the work presented in the paper "NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING" by Barret et al from Google Brain.
Python
No issues in this repository yet.