The lit
package implements a kernel-based multivariate testing
procedure, called Latent Interaction Testing (LIT), to test for latent
genetic interactions in genome-wide association studies. See our
manuscript for additional details:
Bass AJ, Bian S, Wingo AP, Wingo TS, Culter DJ, Epstein MP. Identifying latent genetic interactions in genome-wide association studies using multiple traits. Submitted; 2023.
This software is implemented in the R
statistical programming
language. To install the release version, type the following in the R
terminal:
# release version
install.packages("lit")
The development version of lit
can be installed using the following
code:
# install devtools
install.packages("devtools")
devtools::install_github("ajbass/lit")
The vignette can be viewed by typing:
browseVignettes(package = "lit")
If you run into issues with gfortran
on Mac, see the answer
here
for additional details.
We provide two ways to use the lit
package. When the genotypes can be
loaded in R (small GWAS datasets), the lit()
function can be used:
library(lit)
# set seed
set.seed(123)
# generate 10 SNPs for 10 individuals
X <- matrix(rbinom(10 * 10, size = 2, prob = 0.25), ncol = 10)
# generate 4 phenotypes for 10 individuals
Y <- matrix(rnorm(10 * 4), ncol = 4)
# test for latent genetic interactions
out <- lit(Y, X)
head(out)
#> wlit ulit alit
#> 1 0.2681410 0.3504852 0.3056363
#> 2 0.7773637 0.3504852 0.6044655
#> 3 0.4034423 0.3504852 0.3760632
#> 4 0.7874949 0.3504852 0.6157108
#> 5 0.8701189 0.3504852 0.7337565
#> 6 0.2352616 0.3504852 0.2847600
The output is a data frame of p-values where the rows are SNPs and the columns are different implementations of LIT to test for latent genetic interactions:
wlit
uses a linear kernel to measure pairwise similarity for the genotype and trait matricesulit
uses a projection kernel to measure pairwise similarity for the genotype and trait matricesalit
combines the p-values ofwlit
andulit
using a Cauchy combination test to maximize the number of discoveries
For large GWAS datasets (e.g., biobank-sized), the lit()
function is
not computationally feasible because the genotypes cannot be loaded in
R
. Instead, the lit_plink()
function can be applied directly to
plink files. To demonstrate how to use the function, we use the example
plink files from the genio
package:
# load genio package
library(genio)
# path to plink files
file <- system.file("extdata", 'sample.bed', package = "genio", mustWork = TRUE)
# generate trait expression
Y <- matrix(rnorm(10 * 4), ncol = 4)
# apply lit to plink file
out <- lit_plink(Y, file = file, verbose = FALSE)
head(out)
#> chr id pos alt ref maf wlit ulit alit
#> 1 1 rs3094315 752566 G A 0.3888889 0.7908763 0.3422960 0.6150572
#> 2 1 rs7419119 842013 T G 0.3888889 0.1552580 0.3422960 0.2194972
#> 3 1 rs13302957 891021 G A 0.2500000 0.4088937 0.3325939 0.3687589
#> 4 1 rs6696609 903426 C T 0.3125000 0.5857829 0.3325939 0.4519475
#> 5 1 rs8997 949654 A G 0.4375000 0.6628300 0.3325939 0.4969663
#> 6 1 rs9442372 1018704 A G 0.2500000 0.3192430 0.3325939 0.3258332
See ?lit
and ?lit_plink
for additional details and input arguments.
Note that a marginal testing procedure for latent genetic interactions
based on the squared residuals and cross products (Marginal (SQ/CP)) can
also be implemented using the marginal
and marginal_plink
functions:
# apply Marginal (SQ/CP) to loaded genotypes
out <- marginal(Y, X)
# apply Marginal (SQ/CP) to plink file
out <- marginal_plink(Y, file = file, verbose = FALSE)