Primena grafovskih neuronskih mreža na predviđanje vremena izvršavanja SAT rešavača
Kratak opis rada: Cilj ovog rada je predviđanje vremena izvršavanja SAT rešavača korišćenjem grafovskih neuronskih mreža i evaluacija pogodnosti tog pristupa za konstrukciju portfolija SAT rešavača. Grafovske neuronske mreže rade direktno nad grafovskim reprezentacijama formula iskazne logike, umesto nad specifično definisanim skalarnim atributima. Kako je već poznato da neuronske mreže koje rade nad izvornim reprezentacijama podataka (što za iskazne formule mogu biti grafovi) često po performansama prestižu sisteme zasnovane na atributima koje su definisali ljudi, postoji osnov da se očekuju bolji rezultati od do sada postignutih. S druge strane, ova vrsta neuronskih mreža može biti računski zahtevnija za primenu. Otud je potrebno evaluirati njihov potencijal za realnu primenu. Uspeh odabranih metoda biće upoređenjen sa klasifikatorima koji su do sada demonstrirali veliki uspeh: k-najbližih suseda i šume nasumičnih stabala. Eksperimenti će biti izvršeni korišćenjem programskih jezika Python i C++. Podaci će biti odabrani iz korpusa sa takmičenja SAT Competition.
Rad: ovde
SAT solvers' running time prediction using graph neural networks
Abstract: This thesis discusses the usage of graph neural networks (GNN) for SAT solvers' running time prediction, with the emphasis in using such an approach in constructing a SAT portfolio. The idea is to use GNN for operating over graph representation of propositional calculus formulae instead of human-crafted scalar data. As it's known, neural networks operate over raw data representations (which can be graphs in propositional calculus formulae's case) and provide better results over systems that are applied on attributes crafted by humans. Thus, it is plausible to believe that this approach would lead to better results than what had been achieved so far. On the other hand, GNNs can be difficult to use in practical cases, due to the very expensive computational complexity nature. Because of this, it is important to evaluate the practicality of such a system. To test this idea, we've chosen three popular GNN architectures: graph convolution network (GCN), graph attention network (GAT), and deep graph convolution neural network (DGCNN). The success of the chosen methods will be compared to classifiers which had proven their success in the past: k-nearest neighbors and random forests. The experiments will be achieved using programming languages Python and C++. The data will be selected from the corpus of SAT competition.
Thesis (in Serbian): here