-
Prepare
-
Download npy/ffhq, styleGAN2 pretrained model, ArcFace pretrained model, Face segmentation pretrained model and test faces from https://drive.google.com/drive/folders/1LXGi5WF2uxRs0gRICDSkhhfYynTs2haL?usp=sharing
-
Create Docker Contrainer
cd global bash ./docker/docker.sh
- StyleGAN2 & ArcFace : ./pretrained_models/ 아래에 위치함
- test_faces.pt: Optimization & Global에서 사용 -> 파일 위치 올바르게 바꾸기
-
cd global
python global.py --method "Baseline" --num_test 10 --topk 50
cd global
python global.py --method "Random" --num_test 100 --topk 50
- num_test: Number of test faces to use
- num_attempts: Number of iterations (check diversity)
- topk: Number of channels to change
model.py : RandomInterpolation defined
Extracts core semantics, unwanted semantics from target and source positives from the source
Use probabilistic approach to sample and create updated final target embedding