akbloodadarsh/Twitter-Sentimental-Analysis
I have used Multinomial Naive Bayes, Random Trees Embedding, Random Forest Regressor, Random Forest Classifier, Multinomial Logistic Regression, Linear Support Vector Classifier, Linear Regression, Extra Tree Regressor, Extra Tree Classifier, Decision Tree Classifier, Binary Logistic Regression and calculated accuracy score, confusion matrix and ROC(Receiver Operating Characteristic) and AUC(Area Under Curve) and finally shown how they are classifying the tweet in positive and negative.
PythonMIT