This project contains a 10-tier microservices application. The application is a web-based e-commerce app called “Hipster Shop” where users can browse items, add them to the cart, and purchase them.
Google uses this application to demonstrate use of technologies like Kubernetes/GKE, Istio, Stackdriver, gRPC and OpenCensus. This application works on any Kubernetes cluster (such as a local one), as well as Google Kubernetes Engine. It’s easy to deploy with little to no configuration.
If you’re using this demo, please ★Star this repository to show your interest!
👓Note to Googlers: Please fill out the form at go/microservices-demo if you are using this application.
Home Page | Checkout Screen |
---|---|
Hipster Shop is composed of many microservices written in different languages that talk to each other over gRPC.
Find Protocol Buffers Descriptions at the ./pb
directory.
Service | Language | Description |
---|---|---|
frontend | Go | Exposes an HTTP server to serve the website. Does not require signup/login and generates session IDs for all users automatically. |
cartservice | C# | Stores the items in the user's shipping cart in Redis and retrieves it. |
productcatalogservice | Go | Provides the list of products from a JSON file and ability to search products and get individual products. |
currencyservice | Node.js | Converts one money amount to another currency. Uses real values fetched from European Central Bank. It's the highest QPS service. |
paymentservice | Node.js | Charges the given credit card info (mock) with the given amount and returns a transaction ID. |
shippingservice | Go | Gives shipping cost estimates based on the shopping cart. Ships items to the given address (mock) |
emailservice | Python | Sends users an order confirmation email (mock). |
checkoutservice | Go | Retrieves user cart, prepares order and orchestrates the payment, shipping and the email notification. |
recommendationservice | Python | Recommends other products based on what's given in the cart. |
adservice | Java | Provides text ads based on given context words. |
loadgenerator | Python/Locust | Continuously sends requests imitating realistic user shopping flows to the frontend. |
- Kubernetes/GKE: The app is designed to run on Kubernetes (both locally on "Docker for Desktop", as well as on the cloud with GKE).
- gRPC: Microservices use a high volume of gRPC calls to communicate to each other.
- Istio: Application works on Istio service mesh.
- OpenCensus Tracing: Most services are instrumented using OpenCensus trace interceptors for gRPC/HTTP.
- Stackdriver APM: Many services are instrumented with Profiling, Tracing and Debugging. In addition to these, using Istio enables features like Request/Response Metrics and Context Graph out of the box. When it is running out of Google Cloud, this code path remains inactive.
- Skaffold: Application is deployed to Kubernetes with a single command using Skaffold.
- Synthetic Load Generation: The application demo comes with a background job that creates realistic usage patterns on the website using Locust load generator.
Note: that the first build can take up to 20-30 minutes. Consequent builds will be faster.
💡 Recommended if you're planning to develop the application.
-
Install tools to run a Kubernetes cluster locally:
- kubectl (can be installed via
gcloud components install kubectl
) - Docker for Desktop (Mac/Windows): It provides Kubernetes support as noted here.
- skaffold (ensure version ≥v0.20)
- kubectl (can be installed via
-
Launch “Docker for Desktop”. Go to Preferences:
- choose “Enable Kubernetes”,
- set CPUs to at least 3, and Memory to at least 6.0 GiB
-
Run
kubectl get nodes
to verify you're connected to “Kubernetes on Docker”. -
Run
skaffold run
(first time will be slow, it can take ~20-30 minutes). This will build and deploy the application. If you need to rebuild the images automatically as you refactor the code, runskaffold dev
command. -
Run
kubectl get pods
to verify the Pods are ready and running. The application frontend should be available at http://localhost:80 on your machine.
💡 Recommended for demos and making it available publicly.
-
Install tools specified in the previous section (Docker, kubectl, skaffold)
-
Create a Google Kubernetes Engine cluster and make sure
kubectl
is pointing to the cluster.gcloud services enable container.googleapis.com gcloud container clusters create demo --enable-autoupgrade \ --enable-autoscaling --min-nodes=3 --max-nodes=10 --num-nodes=5 --zone=us-central1-a kubectl get nodes
-
Enable Google Container Registry (GCR) on your GCP project and configure the
docker
CLI to authenticate to GCR:gcloud services enable containerregistry.googleapis.com gcloud auth configure-docker -q
-
In the root of this repository, run
skaffold run --default-repo=gcr.io/[PROJECT_ID]
, where [PROJECT_ID] is your GCP project ID.This command:
- builds the container images
- pushes them to GCR
- applies the
./kubernetes-manifests
deploying the application to Kubernetes.
Troubleshooting: If you get "No space left on device" error on Google Cloud Shell, you can build the images on Google Cloud Build: Enable the Cloud Build API, then run
skaffold run -p gcb --default-repo=gcr.io/[PROJECT_ID]
instead. -
Find the IP address of your application, then visit the application on your browser to confirm installation.
kubectl get service frontend-external
Troubleshooting: A Kubernetes bug (will be fixed in 1.12) combined with a Skaffold bug causes load balancer to not to work even after getting an IP address. If you are seeing this, run
kubectl get service frontend-external -o=yaml | kubectl apply -f-
to trigger load balancer reconfiguration.
💡 Recommended for test-driving the application on an existing cluster.
Prerequisite: a running Kubernetes cluster.
-
Clone this repository.
-
Deploy the application:
kubectl apply -f ./release/kubernetes-manifests
-
Run
kubectl get pods
to see pods are in a healthy and ready state. -
Find the IP address of your application, then visit the application on your browser to confirm installation.
kubectl get service frontend-external
Note: you followed GKE deployment steps above, run
skaffold delete
first to delete what's deployed.
-
Create a GKE cluster (described above).
-
Use Istio on GKE add-on to install Istio to your existing GKE cluster.
gcloud beta container clusters update demo \ --zone=us-central1-a \ --update-addons=Istio=ENABLED \ --istio-config=auth=MTLS_PERMISSIVE
NOTE: If you need to enable
MTLS_STRICT
mode, you will need to update several manifest files:kubernetes-manifests/frontend.yaml
: delete "livenessProbe" and "readinessProbe" fields.kubernetes-manifests/loadgenerator.yaml
: delete "initContainers" field.
-
(Optional) Enable Stackdriver Tracing/Logging with Istio Stackdriver Adapter by following this guide.
-
Install the automatic sidecar injection (annotate the
default
namespace with the label):kubectl label namespace default istio-injection=enabled
-
Apply the manifests in
./istio-manifests
directory.kubectl apply -f ./istio-manifests
This is required only once.
-
Deploy the application with
skaffold run --default-repo=gcr.io/[PROJECT_ID]
. -
Run
kubectl get pods
to see pods are in a healthy and ready state. -
Find the IP address of your istio gateway Ingress or Service, and visit the application.
INGRESS_HOST="$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')" echo "$INGRESS_HOST" curl -v "http://$INGRESS_HOST"
- Google Cloud Next'18 London – Keynote showing Stackdriver Incident Response Management
- Google Cloud Next'18 SF
- Day 1 Keynote showing GKE On-Prem
- Day 3 – Keynote showing Stackdriver APM (Tracing, Code Search, Profiler, Google Cloud Build)
- Introduction to Service Management with Istio
This is not an official Google project.