/deep-traffic-generation

Air Traffic Generation

Primary LanguageJupyter Notebook

Deep Traffic Generation

Description

Package that provides neural networks (mostly autoencoders) to embed and generate traffic trajectories. This project relies on traffic and Pytorch-Lightning libraries.

Installation

# create new python environment for traffic
conda create -n traffic -c conda-forge python=3.9 traffic
conda activate traffic

# clone project   
git clone https://github.com/alafage/deep-traffic-generation

# install project
cd deep-traffic-generation
pip install .

How to run

Navigate to any python file in deep_traffic_generation and run it.

# module folder
cd deep_traffic_generation

# example: run module with default arguments
python linear_ae.py
# example: run module with custom arguments
python linear_ae.py --gpus 1 --early_stop 10 --max_epochs 200 --lr 0.001

You can use Tensorboard to visualize training logs.

tensorboard --logdir lightning_logs

Documentation

Is provided along this project a documentation generated using Sphinx. Here the commands to generate it. Navigate to the docs folder and do:

make html
# or
sphinx-build -b html source build