Rasa NLU GQ
Rasa NLU (Natural Language Understanding) 是一个自然语义理解的工具,举个官网的例子如下:
"I'm looking for a Mexican restaurant in the center of town"
And returning structured data like:
intent: search_restaurant
entities:
- cuisine : Mexican
- location : center
Intent of this project
这个项目的目的和初衷,是由于官方的rasa nlu里面提供的components和models并不能满足实际需求。所以我自定义了一些components,并发布到Pypi上。可以通过pip install rasa-nlu-gao
下载。后续会不断往里面填充和优化组件,也欢迎大家贡献。
New features
目前新增的特性如下(请下载最新的rasa-nlu-gao版本):
- 新增了实体识别的模型,一个是bilstm+crf,一个是idcnn+crf膨胀卷积模型,对应的yml文件配置如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "intent_featurizer_count_vectors"
token_pattern: "(?u)\b\w+\b"
- name: "intent_classifier_tensorflow_embedding"
- name: "ner_bilstm_crf"
lr: 0.001
char_dim: 100
lstm_dim: 100
batches_per_epoch: 10
seg_dim: 20
num_segs: 4
batch_size: 200
tag_schema: "iobes"
model_type: "bilstm" # 模型支持两种idcnn膨胀卷积模型或bilstm双向lstm模型
clip: 5
optimizer: "adam"
dropout_keep: 0.5
steps_check: 100
- 新增了jieba词性标注的模块,可以方便识别名字,地名,机构名等等jieba能够支持的词性,对应的yml文件配置如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "ner_crf"
- name: "jieba_pseg_extractor"
part_of_speech: ["nr", "ns", "nt"]
- name: "intent_featurizer_count_vectors"
OOV_token: oov
token_pattern: "(?u)\b\w+\b"
- name: "intent_classifier_tensorflow_embedding"
- 新增了根据实体反向修改意图,对应的文件配置如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "ner_crf"
- name: "jieba_pseg_extractor"
- name: "intent_featurizer_count_vectors"
OOV_token: oov
token_pattern: '(?u)\b\w+\b'
- name: "intent_classifier_tensorflow_embedding"
- name: "entity_edit_intent"
entity: ["nr"]
intent: ["enter_data"]
min_confidence: 0
- 新增了word2vec提取词向量特征,对应的配置文件如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "intent_featurizer_wordvector"
vector: "data/vectors.txt"
- name: "intent_classifier_tensorflow_embedding"
- name: "ner_crf"
- name: "jieba_pseg_extractor"
- 新增了bert模型提取词向量特征,对应的配置文件如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "bert_vectors_featurizer"
ip: '172.16.10.46'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "intent_classifier_tensorflow_embedding"
- name: "ner_crf"
- name: "jieba_pseg_extractor"
- 新增了对CPU和GPU的利用率的配置,主要是
intent_classifier_tensorflow_embedding
和ner_bilstm_crf
这两个使用到tensorflow的组件,配置如下(当然config_proto可以不配置,默认值会将资源全部利用):
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "intent_featurizer_count_vectors"
token_pattern: '(?u)\b\w+\b'
- name: "intent_classifier_tensorflow_embedding"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
- name: "ner_bilstm_crf"
config_proto: {
"device_count": 4,
"inter_op_parallelism_threads": 0,
"intra_op_parallelism_threads": 0,
"allow_growth": True
}
- 新增了
embedding_bert_intent_classifier
分类器,对应的配置文件如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "bert_vectors_featurizer"
ip: '172.16.10.46'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "intent_classifier_tensorflow_embedding_bert"
- name: "ner_crf"
- name: "jieba_pseg_extractor"
- 在基础词向量使用bert的情况下,后端的分类器使用tensorflow高级api完成,tf.estimator,tf.data,tf.example,tf.saved_model
intent_estimator_classifier_tensorflow_embedding_bert
分类器,对应的配置文件如下:
language: "zh"
pipeline:
- name: "tokenizer_jieba"
- name: "bert_vectors_featurizer"
ip: '127.0.0.1'
port: 5555
port_out: 5556
show_server_config: True
timeout: 10000
- name: "intent_estimator_classifier_tensorflow_embedding_bert"
- name: "nlp_spacy"
- name: "ner_crf"
Quick Install
pip install rasa-nlu-gao
🤖 Running of the bot
To train the NLU model:
python -m rasa_nlu_gao.train -c sample_configs/config_embedding_bilstm.yml --data data/examples/rasa/rasa_dataset_training.json --path models
To run the NLU model:
python -m rasa_nlu_gao.server -c sample_configs/config_embedding_bilstm.yml --path models
Some Examples
具体的例子请看rasa_chatbot_cn