/Neural-Variational-Knowledge-Graphs

A simple Tensorflow implementation of https://arxiv.org/abs/1906.04985

Primary LanguagePythonMIT LicenseMIT

Neural-Variational-Knowledge-Graphs

Overview

This library contains a Tensorflow implementation of the Laten Fact Model and Latent Information model for Gaussian and Von-Mises Fisher latent priors, using the re-parametrisation trick to learn the distributional parameters. The VMF re-parametrisation trick is as presented in [1](http://arxiv.org/abs/1804.00891). Check out the authors of VMF blogpost (https://nicola-decao.github.io/s-vae). The Gaussian re-parametrisation trick is a Tensorflow probability function.


From paper

Dependencies

Installation

To install, run

$ python setup.py install

Structure


CONTRIBUTERS:

  • Alexander Cowen-Rivers (GitHub)

Supervisors:


Instructions

For:


Training Models

Train variational knowledge graph model, on nations dataset with normal prior using DistMult scoring function :

python main_LIM.py  --no_batches 10 --epsilon 1e-07 --embedding_size 50 --dataset nations --alt_prior False --lr 0.001 --score_func DistMult --negsamples 5 --projection False --distribution normal --file_name /User --s_o False

Usage

  1. Clone or download this repository.
  2. Prepare your data, or use any of the six included KG datasets.

Usage

Please cite [1] and [2] in your work when using this library in your experiments.

Feedback

For questions and comments, feel free to contact ACR(mailto:mc_rivers@icloud.com).

License

MIT

Citation

[1] Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T.,
and Tomczak, J. M. (2018). Hyperspherical Variational
Auto-Encoders. arXiv preprint arXiv:1804.00891.

BibTeX format:

@article{s-vae18,
  title={Hyperspherical Variational Auto-Encoders},
  author={Davidson, Tim R. and
          Falorsi, Luca and
          De Cao, Nicola and
          Kipf, Thomas and
          Tomczak, Jakub M.},
  journal={arXiv preprint arXiv:1804.00891},
  year={2018}
}