/paiss

NLE practical session for PAISS 2018

Primary LanguagePythonMIT LicenseMIT

PAISS18

NLE practical session for PAISS 2018

Installation

This code requires Python 3 and Pytorch 0.4. Follow the instructions below to install all the necessary dependencies.

Linux / MacOS

First, download and install the appropriate version of miniconda following the instructions for MacOS or Linux.

Then run the following commands:

source $HOME/miniconda3/bin/activate #Activates your conda environment
conda install numpy matplotlib ipython scikit-learn
conda install pytorch torchvision faiss-cpu -c pytorch

On MacOS there’s a bug for faiss related to libomp (facebookresearch/faiss#485): run “brew install libomp” (see https://brew.sh/ to install brew) to resolve this bug.

Windows

Install anaconda on windows (launch .exe file downloaded from the conda website). It has to be python 3 (pytorch doesn’t support 2.7 on windows)

In the anaconda prompt, run:

conda create -n pytorch
activate pytorch
conda install pytorch-cpu -c pytorch
pip install torchvision --no-deps
conda install pillow

NOTE: The FAISS package is not supported on Windows. Participants with Windows machines must follow the product quantization exercise with their neighbours.

Downloading the code, dataset, and models

First, clone this repository:

cd $HOME/my_projects
git clone https://github.com/almazan/paiss.git

Then, you will need to download 4 files:

  • oxbuild_images.tgz (1.8GB)
  • gt_files_170407.tgz (280KB)
  • features.tgz (579MB)
  • models.tgz (328MB)

and store them in the appropriate paths.

Note: All paths in this section are relative to the root directory of this repository.

Oxford dataset

On Linux/MacOS, execute the following:

cd $HOME/my_projects/paiss
wget www.robots.ox.ac.uk/~vgg/data/oxbuildings/oxbuild_images.tgz -O images.tgz
mkdir -p data/oxford5k/jpg && tar -xzf images.tgz -C data/oxford5k/jpg
wget www.robots.ox.ac.uk/~vgg/data/oxbuildings/gt_files_170407.tgz -O gt_files.tgz
mkdir -p data/oxford5k/lab && tar -xzf gt_files.tgz -C data/oxford5k/lab

On Windows, perform the following:

Features and models

On Linux/MacOS, execute the following:

cd $HOME/my_projects/paiss
wget https://www.dropbox.com/s/gr404xlfr4021pw/features.tgz?dl=1 -O features.tgz
tar -xzf features.tgz -C data
wget https://www.dropbox.com/s/mr4risqu7t9neel/models.tgz?dl=1 -O models.tgz
tar -xzf models.tgz -C data

On Windows, perform the following:

Demo

Execute:

source $HOME/miniconda3/bin/activate
cd $HOME/my_projects/paiss
python demo.py --qidx 42 --topk 5 

and you should see the following ouput:

Output